心脏病学实践2014
上QQ阅读APP看书,第一时间看更新

肥胖相关性高血压的机制与干预

早在20世纪20年代,已有肥胖与高血压关系的研究[1];Framingham心脏研究在20世纪60年代进一步证实了肥胖可以增加高血压的患病风险[2]。肥胖与高血压并存,可增加血压控制的难度,促进多重心血管代谢危险因素聚集,增加心脑血管疾病风险。近年来,高血压与肥胖的患病率在全球均呈显著上升趋势。过去30年里,中国的肥胖率急剧上升,已成为全球第二大肥胖人口大国[3]。新近发布的2013年《中国心血管病报告》显示:2010年,成人超重率、肥胖率分别达到30.6%和12%;中心性肥胖[腰围≥85cm(男性)/80cm(女性)]患病率达45.3%;2012年全国高血压患病人数为2.7亿。预防和控制肥胖及其相关疾病,已成为我国面临的重大公共卫生问题。

从20世纪80年代起,国外有学者开始使用“Obesity-related hypertension、Obesity-induced hypertension、Obesity associated hypertension”来描述肥胖相关性高血压[4,5]。近年来,欧洲高血压学会(ESH)[6]、美国高血压学会(ASH)[7]和欧洲肥胖研究学会(EASO)[8,9]等学术组织也发布了一系列关于肥胖相关性高血压的立场声明及专家共识。肥胖相关性高血压的机制及其干预策略逐渐受到关注。

一、肥胖相关性高血压的病理生理机制

肥胖相关性高血压的主要病理生理改变涉及交感神经系统激活、心输出量增加、血浆容量扩张和钠水潴留、肾素-血管紧张素-醛固酮系统(RAAS)激活、胰岛素抵抗、脂肪因子失衡、炎症/氧化应激、血管外脂肪功能异常、肠道激素异常以及睡眠呼吸暂停综合征等方面[7,10,11](图1)。此外,基因和环境因素之间交互作用导致的表观遗传学改变也参与了肥胖、血管功能异常和肥胖相关高血压的病理生理机制[11-14]

图1 肥胖相关性高血压的主要病理生理机制

1.交感神经系统激活

交感神经系统激活在肥胖致高血压的发生和发展过程中起重要作用[15],甚至在肥胖患者血压尚正常时即可导致亚临床的心血管和肾脏功能改变[16]。肥胖相关的交感神经系统激活机制包括压力反射功能异常、下丘脑-垂体轴功能失调、高胰岛素血症/胰岛素抵抗、高瘦素血症、RAAS激活和睡眠呼吸暂停综合征等。研究显示,高脂饮食可导致肾动脉及腰神经交感张力增高,伴随血压、心率快速升高[17,18],早年的肾交感神经切除术和近年来开展的肾动脉交感神经消融术等高血压的治疗研究进一步提示肾脏交感系统激活在肥胖相关性高血压病理生理机制中的作用。近期研究还发现,主要由下丘脑、脑干神经元分泌的阿黑皮素原(Proopiomelanocortin,POMC)产生的一系列神经多肽可作用于黑皮素原受体(MC4R,MC3R),介导瘦素、胰岛素的代谢以及交感、心血管效应[19]。动物试验显示,脑室内注射黑皮素受体拮抗剂(SHU 9119)可显著降低肥胖小鼠的肾交感活性[20],降低肥胖大鼠、自发性高血压大鼠的血压[21,22];另一方面,携带MC4R突变基因型的患者在肥胖情况下血压、心率、交感张力更低[23],提示中枢黑皮素能(Melanocortinergic)系统在肥胖相关性高血压机制中可能起着重要的调节作用。

2.脂肪病变

脂肪组织具有内分泌、旁分泌及自分泌功能,目前已发现人脂肪细胞能分泌100多种脂肪因子。脂联素(Adiponectin)是脂肪组织基因表达最丰富的蛋白质产物之一,具有胰岛素增敏、调脂、抗炎、抗动脉粥样硬化等作用,其水平在肥胖患者中显著降低。低脂联素血症可导致胰岛素抵抗、内皮一氧化氮合酶(eNOS)表达下调,从而引起高血压[24]。瘦素是与高血压关系最为密切的脂肪因子。两项前瞻性研究证实血浆瘦素浓度增高是高血压发生的独立预测因子[25,26]。瘦素主要通过中枢神经系统的受体发挥作用。生理水平的瘦素具有抑制食欲、增加能量消耗、抑制脂肪合成、促进脂肪分解的作用,但大部分肥胖患者血浆瘦素水平升高,提示存在瘦素抵抗[27]。高瘦素血症可促进去甲肾上腺素转化,通过下丘脑皮质激素通路增加交感活性导致血压升高[28]。近期研究发现,白色脂肪的脂肪传入反射(AAR)增强可导致交感神经活化、血压升高[29],瘦素则可能是其接受中枢调控的感受器之一[30]

瞬时受体电位通道的一种亚型(TRPV1,辣椒素受体)在脂肪组织中表达,肥胖时脂肪组织的TRPV1表达下调、功能受损,内皮细胞eNOS磷酸化及NO生成减少,内皮依赖的舒张反应受损,导致血压升高[31]。激活TRPV1能增加脂肪细胞的钙内流,抑制脂肪生成[32];激活解偶联蛋白-2(UCP-2),改善肝脏脂肪代谢[33];促进胰高血糖素样肽1(GLP-1)分泌,改善糖代谢[34];拮抗肾脏上皮细胞钠通道(ENaC)介导的钠重吸收,降低血压[35]。瞬时受体电位通道的另一种亚型(TRPM8)则与棕色脂肪活性有关[36],激活TRPM8可抑制钙信号介导的RhoA/Rho激酶激活,改善血流介导的血管舒张反应,降低血压[37]。此外,抵抗素、肿瘤坏死因子-α、白介素-6、网膜素(omentin)、内脂素(Visfatin)、纤溶酶原激活物抑制物-1和视黄醇结合蛋白4等脂肪因子也与血压有关(表1)。血管旁脂肪则参与调控血管功能:一方面,血管旁脂肪可分泌目前尚未明确的脂肪源性舒血管因子(ADRF),降低血管平滑肌张力;另一方面,血管旁脂肪又可分泌TNF-α、血管紧张素Ⅱ、超氧化物等缩血管因子导致血管张力增加[38],有报道指出高血压时血管旁脂肪功能异常。

表1 影响血压的主要脂肪因子

3.肾素-血管紧张素-醛固酮系统激活

肥胖时肾素-血管紧张素-醛固酮系统(RAAS)各组分水平均有明显升高,且醛固酮升高水平超过了肾素活性[39]。除了肾脏RAAS激活之外,脂肪、心脏、血管、免疫系统和中枢神经系统的RAAS也显著激活[40-42]。RAAS激活可导致胰岛素抵抗、交感激活、免疫异常和肾脏钠潴留,在肥胖相关性高血压中起着重要作用[43]。RAAS激活的机制包括交感神经系统刺激肾素释放,脂肪组织(尤其腹内脂肪)血管紧张素Ⅱ、血管紧张素原合成增加[44,45],以及游离脂肪酸和其他脂肪因子促进醛固酮的合成和释放。醛固酮水平增高不仅通过增加钠潴留导致血容量扩张,还可促进活性氧簇(Reactive oxygen species,ROS)的生成,而ROS增加又会刺激盐皮质受体,形成恶性循环[46]

4.肾脏病变

容量负荷增加、钠潴留是肥胖的重要临床特征,肾脏功能改变在其中起着重要作用。人群队列研究提示,在发生肥胖和高血压之前,即已经出现肾脏功能改变[47]。肥胖可通过中枢交感神经系统激活、醛固酮水平增高、血管紧张素Ⅱ升高(直接作用及促进醛固酮释放)等机制促进肾脏近曲肾小管钠的重吸收,使肾脏压力-尿钠曲线(pressure-natriuresis curve)右移,进而升高血压以维持钠盐和容量平衡。肥胖时高胰岛素血症导致的RAAS激活和交感激活也可作用于肾小管促进钠盐重吸收;胰岛素抵抗可通过损害血管内皮及直接增加肾脏钠潴留导致血压升高[48]。血管紧张素Ⅱ调控近曲小管钠糖转运体2(SGLT2),影响糖和钠的重吸收,参与高血压的形成[49-51]。肥胖时腹部脂肪堆积、细胞外基质增加可压迫肾脏髓质,增加钠水潴留,升高血压。此外,致密肾脏组织中的异位脂肪沉积也可升高肾内压,导致钠水潴留,并升高血压。

5.血管功能异常

肥胖时的血管功能异常包括血管结构改变、内皮功能异常、血管舒缩反应失衡和血管僵硬度增加等[52,53]。其中,内皮功能异常和血管僵硬度增加可能是肥胖导致血压升高的主要早期改变[40],胰岛素抵抗则是启动这一病理生理过程的重要机制[54,55]。交感激活、炎症因子、氧化应激以及NO活性降低是肥胖导致血管功能损害的主要原因[53,56,57]。血管外基质改变、血管平滑肌功能异常以及内皮功能异常本身也参与了血管僵硬度增加的病理生理机制[55,58,59]。此外,肥胖时合并的代谢紊乱也可导致血管功能损害。高血糖可损害血管内皮自分泌、旁分泌功能,直接影响各种血管活性物质对血管的调节作用,如动脉顺应性降低等。同时,炎性介质、细胞因子等也参与或加重血管功能异常。高血糖还可使血管壁胶原纤维交联增强,导致动脉重塑。血脂紊乱可使血浆游离脂肪酸(FFA)水平升高,从而损伤血管内皮功能,导致舒血管物质(NO)减少;升高的FFA可损害压力感受反射(BRS),促使血压升高。游离脂肪酸通过环氧化酶敏感机制增强α1肾上腺素受体介导的血管反应,氧化型LDL(ox-LDL)能浓度依赖性地抑制内皮源性舒张因子(EDRF),导致血管舒缩功能异常。

6.胃肠道异常

近年来,不健康膳食、肠道激素分泌异常、肠道菌群异常与肥胖、糖脂代谢紊乱、高血压的关系逐渐受到关注[60-62]。胃肠道除了作为消化器官外,也是重要的内分泌器官,能够分泌多种代谢相关激素,包括胆囊收缩素(CKK)、抑胃多肽(GIP)、胰高血糖素样肽-1(GLP-1)、胰高血糖素样肽-2(GLP-2)、二肽基肽酶-4抑制剂(DPP-4)、胰多肽(PP)、多肽YY(PYY)、胃泌酸调节素(OXM)、生长抑素(ss)和Ghrelin、肥胖抑制素(obestatin)等。胃肠激素多通过肾脏尿钠排泄或经中枢神经系统交感神经参与血压的调控[11]。近年研究显示,DPP-4还可由肾脏、CD4、CD8免疫细胞表达[63];DPP-4抑制剂可抑制脂肪组织和动脉粥样斑块中的M1巨噬细胞聚集,增加其中的M2巨噬细胞水平[64];而GLP-1则可增强调节性T细胞(TREG)的功能[65]。除胃肠激素外,肠道微生物异常也与肥胖、胰岛素抵抗、2型糖尿病和高血压有关[66][67]。有研究报道,肥胖人群中远端肠段中厚壁菌(Phylum Firmicutes)增加而拟杆菌(Bacteroidetes)减少[68]。近年研究显示,肥胖人群肠道细菌的基因和种类丰富程度较低,并与其肥胖程度、胰岛素抵抗、血脂异常和炎症程度相关[69]。高纤维膳食(水果和蔬菜等)可增加肠道细菌丰富程度,改善与肥胖相关的临床症状[70]。健康膳食、胃肠道代谢手术、DPP-4抑制剂及GLP-1激动剂对肥胖和血压的良好干预效果提示,干预胃肠道可作为一种治疗肥胖和高血压的新方法[71-73]

二、肥胖相关性高血压的综合干预

肥胖是导致肥胖相关性高血压的主要病因,肥胖合并高血压往往伴随多重代谢紊乱。因此,肥胖相关性高血压的干预应当兼顾降低血压、控制体重和改善代谢紊乱三个方面。治疗策略上应根据病情需要贯彻综合干预和个体化治疗原则,尤其注意生活方式的改善;药物选择上控制肥胖及相关代谢紊乱应与降低血压并重。

1.生活方式干预

对肥胖的干预是肥胖相关性高血压综合干预的基石。生活方式干预可减轻体重,尤其是减轻腹部脂肪堆积,通过降低交感张力、改善胰岛素敏感性、恢复血管压力感受性反射功能、降低血浆瘦素、改善阻塞性睡眠呼吸暂停、抑制RAAS激活、降低肾钠潴留和改善内皮功能等机制降低血压[74]。近年研究显示,生活方式干预还可能通过影响肠道菌群和胃肠道激素来改善代谢、降低体重和血压[75,76]

健康膳食与适量运动是最主要的生活干预方式。一项荟萃分析显示,膳食干预可以使体重减轻4.0kg(95%CI:4.8~3.2),收缩压降低4.5mmHg(95%CI:7.2~1.8mmHg),舒张压降低3.2mmHg(95%CI:4.8~1.5mmHg)[77]。2013年AHA/ACC/TOS(美国肥胖学会)在成人超重和肥胖管理指南中指出,生活方式的改变,即使只是适度变化,维持体重减少3%~5%即可明显改善糖脂代谢。体重下降越多,血压改变越明显,如体重下降5%可使收缩和舒张压下降3/2mmHg[78]。减少能量摄入有利于控制体重,建议男性摄入1500~1800kcal/d,女性摄入1200~1500kcal/d,或摄入500~700kcal/d低能量膳食[78]。目前尚无减轻体重的特别膳食方案,但一项Cochrane系统分析显示,低生糖指数饮食可显著降低超重或肥胖患者的体重(1.1kg,95%CI:2.0~0.2)、体脂(1.1kg,95%CI:1.9~0.4)和体重指数(1.3kg/m2,95%CI:2.0~0.5),总胆固醇、低密度脂蛋白胆固醇也有显著降低[79]

有氧训练能减少体重和血压,单纯中等强度的有氧训练6~12个月只能减少1.6kg体重,如结合其他干预方式,则减重效果更好。有荟萃分析表明,有氧训练可使动态血压下降3.0/2.4mmHg[80]。有研究显示耐力训练也可使血压下降3.9/3.9mmHg[81]。体力活动的目标包括:减少久坐的行为方式(如长时间看电视或者使用计算机),增加每天的运动量。患者增加体力活动的过程中应该得到相应的指导。制订锻炼方案时要考虑到患者的运动能力和健康状况,本着循序渐进和安全第一的原则。建议患者每天进行30~60分钟中等强度的体力活动(用心率来大致区分,进行中等强度体力活动量时的心率为100~120次/分,低强度活动时则为80~100次/分)[82]

国外干预生活方式的研究表明体重下降与血压变化不平行:随访2~3年,体重减轻1kg,收缩压降低1mmHg;随着时间延长,体重减轻可达10kg,收缩压则降低6mmHg[77,83,84]。目前一些维持减重疗效较好的生活方式干预手段一般要求极低热量饮食或持续的专家指导、心理干预,观察时间也不超过5年[85,86]。一项荟萃分析对10项干预时间超过1年的肥胖研究进行汇总,结果发现,减重效应在干预6个月时达到顶峰(体重减轻4.5kg,血压降低3.7/2.7mmHg),7年后减重效应完全消失[74]。因此,受试者维持治疗的依从性较差是生活方式干预的主要局限性。尽管如此,对肥胖相关性高血压患者实施持续的生活方式干预仍十分必要(表2)。

表2 高血压的生活方式干预疗效*

*:根据JNC7编辑[87]

2.药物治疗

(1)降压药物:

目前尚无专门针对肥胖患者进行降压治疗并观察其远期临床终点的大规模临床试验,然而,动物试验和临床研究表明,血管紧张素转化酶抑制剂(ACEI)和血管紧张素Ⅱ受体阻滞剂(ARB)不仅能阻断肾脏、血管、脂肪、心脏等脏器/组织的RAS,还能阻断血管瞬时受体电位通道C3(TRPC3),从而抑制血管反应性、消除血管振荡[88],发挥降压作用。此外,ACEI/ARB还具有改善胰岛素抵抗、激活代谢性核受体(PPARs)、改善代谢及减轻脂肪病变的潜在益处[89,90]。新近上市的肾素抑制剂(阿利吉仑,Aliskiren)可改善糖耐量、胰岛素敏感性和骨骼肌葡萄糖转运活性[91],也有研究显示其对高血压合并肥胖的患者有良好的降压效果和改善内皮功能的效果[92,93]。因此,目前2013AHA/ACC/CDC高血压管理科学建议[94]、JNC8[95]、2014ASH/ISH社区高血压管理指南[96]、ESC/ESH动脉高血压管理指南2013[97]及中国高血压指南2010[98]等均推荐将ACEI/ARB类药物作为高血压合并代谢综合征/糖尿病人群的一线用药。2012年欧洲高血压学会(ESH)与欧洲肥胖研究学会(EASO)在关于肥胖与难治性高血压的科学声明中明确建议将RAS抑制剂作为肥胖相关性高血压或肥胖合并难治性高血压的一线用药[9]。2013年美国高血压学会和肥胖协会的声明中同样提出ACEI和ARB可作为肥胖相关性高血压的一线用药[7]

钙拮抗剂(CCB)作为最常用的降压药,对糖脂等代谢无不良影响[99],但对肥胖也无明显疗效,由于其降压效果良好,可作为肥胖相关性高血压的联合降压药物。肥胖相关性高血压存在隐性的钠水潴留,利尿剂也较常用,可减轻钠水潴留和容量负荷,但如长期大剂量使用可导致低血钾、高尿酸血症和糖耐量异常。中国高血压综合防治研究(CHIEF)4年随访分析表明,对于BMI≥25kg/m2或<25kg/m2两个亚组,钙拮抗剂+ARB组与钙拮抗剂+小剂量利尿剂组对高血压患者复合心血管事件的影响无显著差异[13]。因此,小剂量联合使用利尿剂是安全有效的。β-受体阻滞剂可拮抗交感活性,长期大剂量使用也可能对糖脂代谢产生副作用,但兼具α-、β-受体双重阻断的卡维地洛、阿罗洛尔及拉贝洛尔对糖脂代谢影响较小。肥胖相关性高血压患者合并心肌梗死、心衰或明显交感激活可考虑应用β-受体阻滞剂。由于肥胖时常有交感激活及心率增快,因此,可考虑优先使用具有α-、β-受体双重阻断的药物,且阻断α-受体对血脂紊乱有改善作用,可用于肥胖性高血压患者治疗。由于利尿剂和β-受体阻滞剂可能增加新发糖尿病的风险,因此不宜大剂量、长期使用,且使用期间应注意监测糖脂代谢情况[99]。目前临床常用的降压药物及其使用注意事项见表3。

表3 常用降压药物及其代谢效应*

(2)体重控制药物:

对肥胖相关性高血压患者,若生活方式干预不能减重3%以上,可考虑使用减肥药物[78,82]。20世纪90年代中期,减肥药物开始广泛应用并被寄予厚望,而此期间大量使用的食欲抑制剂(如苯氟拉明、苯丁胺)和强效安非他明样刺激物(麻黄)虽然有明显的体重减轻效果,却先后因为严重的心血管副作用退出市场。近年来临床应用的减肥药物主要有大麻素受体(CB1)阻断剂(利莫那班,Rimonabant)、中枢神经抑制剂(西布曲明,Sibutramine)和胃肠道脂肪酶抑制剂(奥利司他,Orlistat)等。利莫那班、西布曲明也先后因为神经系统及心血管风险退出市场。目前常用于临床的减肥药物及其他具有减肥效果的药物见表4。

奥利司他能抑制胰腺、胃肠中的羧基酯酶及磷脂酶A的活性,减慢胃肠道中食物脂肪水解为氨基酸及单酰基甘油的过程,从而阻断饮食中三分之一脂肪的水解和吸收,降低体内脂肪贮存而减轻体重。荟萃分析显示,奥利司他可使体重下降1.8kg(95%CI:-2.54to-1.06kg)[100];收缩压降低2.5mmHg(95%CI:4.0to-0.9mmHg),舒张压降低1.9mmHg(95%CI:-3.0to-0.9mmHg)[101]。虽然在多项临床研究中显示出良好的减肥效果并改善代谢紊乱,奥利司他却可能导致肝损害、急性胰腺炎和肾结石[102,103]。究竟奥利司他能否成为肥胖相关性高血压体重控制的辅助药物,还有待进一步的临床观察。

表4 常见减肥及改善代谢的药物

其他一些具有减重作用的降糖药物,如二甲双胍、肠促胰素(Incretin)类药物(GLP-1激动剂、DPP-4抑制剂)等近年颇受关注。国外荟萃分析显示二甲双胍在非糖尿病患者中显示出减肥、改善代谢、改善内皮功能和降低血压的作用[104-108]。国内研究也发现二甲双胍在非糖尿病的肥胖相关性高血压患者[109]和高血压伴高胰岛素血症患者[110]中显示出良好的减肥、改善代谢和降压协同作用。荟萃分析显示,胰高血糖素样肽1(GLP-1)受体激动剂可使糖尿病患者血压下降5.24/5.91mmHg[111],体重减轻2.56kg[112]。近年来研究进一步显示,该药用于治疗非糖尿病肥胖患者和青少年重度肥胖安全有效,并有一定的降压作用[113,114],提示GLP-1受体激动剂可能用于非糖尿病肥胖患者的体重控制[115]。上述改善代谢的药物联合降压药可用于肥胖相关性高血压的治疗。

3.介入治疗

(1)胃肠道代谢手术:

由于生活方式干预的依从性有限,减肥药物的心血管安全性存疑,目前代谢手术治疗是重度肥胖(BMI≥35kg/m2)患者获得长期稳定减肥效果和显著改善代谢异常的最有效手段[116],选择合适的病例其疗效可超过90%。AHA、IDF、ADA和国内糖尿病学会/外科学会均有肥胖代谢手术治疗的专家共识与指南[117-121]。根据减轻体重的原理不同,治疗重度肥胖的手术方式分限制摄入、减少吸收或两者兼有三类。目前治疗病理性肥胖的手术方法有:可调节胃束带术(限制摄入)、胃旁路术(限制摄入和减少吸收)、垂直绑带式胃减容术(限制摄入)、袖状胃切除术(限制摄入)和胆胰旷置-十二指肠转位术(主要是减少吸收)。目前最常用的术式为腹腔镜胃旁路转流术(RYGBP)、腹腔镜袖状胃切除术等(SG),手术可使体重减轻幅度达到47%~70%,高血压缓解及改善率达到71.5%~80.8%[120,122],表5。一项荟萃分析显示,胃旁路术(RYGBP)比胃束带术(LAGB)更显著地降低体重,而胆胰旷置-十二指肠转位术(BPD)减重效果则优于胃旁路术(RYGBP)[123]

对于代谢手术改善肥胖和糖尿病的机制,目前认为与摄食/吸收减少、脂肪组织减少、胰岛素抵抗改善、胃肠道激素改变、脂肪因子改变、肠道内糖异生作用及肠道菌群改变等机制有关[73,124],但其改善血压的机制尚不清楚。此外,目前的胃肠道代谢手术主要应用于治疗重度肥胖和糖尿病,以控制血压水平/降低高血压发病率为终点的研究还很少。代谢手术能否用于肥胖相关性高血压的治疗及其适应证的选择均值得进一步探索。

表5 不同代谢手术对血压和体重的影响*

GIP:抑胃多肽;GLP-1:胰高血糖素样肽-1;PYY:多肽YY;OXM:胃泌酸调节素;Ghrelin:脑肠肽

:根据Obesity.2013,21(6):1093、Obes Surg.2012;22(5):832、JAMA.2004;292(14):1724修改

(2)经皮肾动脉交感神经消融术(RSD):

RSD目前主要用于治疗难治性高血压,但SYMPLICITY HTN-3试验结果为阴性[125],提示尚须对其消融策略、疗效及安全性行进一步探索[126],其适应证可参照国内的相关专家共识[127]。肥胖及睡眠呼吸暂停综合征(OHSAS)是难治性高血压的常见原因,有报道称RSD可降低交感活性、减轻胰岛素抵抗、改善糖脂代谢及OHSAS,但其是否适合肥胖相关性高血压的治疗尚需进一步明确[127]

(祝之明 何洪波)

参考文献

[1]Jr AHT.Obesity and hypertension.JAMA,1923,81(15):1283-1284.

[2]Kannel WB,Brand N,Skinner JJ,Jr.,et al.The relation of adiposity to blood pressure and development of hypertension.The Framingham study.Annals of internal medicine,1967,67(1):48-59.

[3]Ng M,Fleming T,Robinson M,et al.Global,regional,and national prevalence of overweight and obesity in children and adults during 1980-2013:a systematic analysis for the Global Burden of Disease Study 2013.Lancet,2014May 28.pii:S0140-6736(14)60460-8.doi:10. 1016/S0140-6736(14)60460-8.[Epub ahead of print].

[4]Landsberg L.Hyperinsulinemia:possible role in obesity-induced hypertension.Hypertension,1992,19(1Suppl):161-166.

[5]Krieger DR,Landsberg L.Mechanisms in obesity-related hypertension:role of insulin and catecholamines.American journal of hypertension,1988,1(1):84-90.

[6]Schlaich MP,Grassi G,Lambert GW,et al.European Society of Hypertension Working Group on Obesity Obesity-induced hypertension and target organ damage:current knowledge and future directions.Journal of hypertension,2009,27(2):207-211.

[7]Landsberg L,Aronne LJ,Beilin LJ,et al.Obesity-related hypertension:pathogenesis,cardiovascular risk,and treatment:aposition paper of The Obesity Society and the American Society of Hypertension.Journal of clinical hypertension,2013,15(1):14-33.

[8]Jordan J,Schlaich M,Redon J,et al.European Society of Hypertension Working Group on Obesity:obesity drugs and cardiovascular outcomes.Journal of hypertension,2011,29(2):189-193.

[9]Jordan J,Yumuk V,Schlaich M,et al.Joint statement of the European Association for the Study of Obesity and the European Society of Hypertension:obesity and difficult to treat arterial hypertension.Journal of hypertension,2012,30(6):1047-1055.

[10]Rahmouni K.Obesity-Associated Hypertension:Recent Progress in Deciphering the Pathogenesis.Hypertension,2014,64(2):215-221.

[11]DeMarco VG,Aroor AR,Sowers JR.The pathophysiology of hypertension in patients with obesity.Nature reviews Endocrinology,2014,10(6):364-376.

[12]Schleithoff C,Voelter-Mahlknecht S,Dahmke IN,et al.On the epigenetics of vascular regulation and disease.Clinical epigenetics,2012,4(1):7.

[13]王文,马丽媛,刘明波,等.初始低剂量氨氯地平加替米沙坦或复方阿米洛利联合治疗对高血压患者血压控制率影响的阶段报告.中华心血管病杂志,2009,37:701-707.

[14]Slomko H,Heo HJ,Einstein FH.Minireview:Epigenetics of obesity and diabetes in humans.Endocrinology,2012,153(3):1025-1030.

[15]Grassi G,Seravalle G,Dell'oro R.Sympathetic activation in obesity:a noninnocent bystander.Hypertension,2010,56(3):338-340.

[16]Lambert E,Sari CI,Dawood T,et al.Sympathetic nervous system activity is associated with obesity-induced subclinical organ damage in young adults.Hypertension,2010,56(3):351-358.

[17]Armitage JA,Burke SL,Prior LJ,et al.Rapid onset of renal sympathetic nerve activation in rabbits fed a high-fat diet.Hypertension, 2012,60(1):163-171.

[18]Muntzel MS,Al-Naimi OA,Barclay A,et al.Cafeteria diet increases fat mass and chronically elevates lumbar sympathetic nerve activity in rats.Hypertension,2012,60(6):1498-1502.

[19]Hirooka Y,Kishi T,Ito K,et al.Potential clinical application of recently discovered brain mechanisms involved in hypertension.Hypertension,2013,62(6):995-1002.

[20]Morgan DA,Thedens DR,Weiss R,et al.Mechanisms mediating renal sympathetic activation to leptin in obesity.Am J Physiol Regul Integr Comp Physiol,2008,295(6):R1730-1736.

[21]Dubinion JH,da Silva AA,Hall JE.Enhanced blood pressure and appetite responses to chronic central melanocortin-3/4receptor blockade in dietary-induced obesity.Journal of hypertension,2010,28(7):1466-1470.

[22]da Silva AA,do Carmo J,Dubinion J,et al.The role of the sympathetic nervous system in obesity-related hypertension.Current hypertension reports,2009,11(3):206-11.

[23]Greenfield JR,Miller JW,Keogh JM,et al.Modulation of blood pressure by central melanocortinergic pathways.The New England journal of medicine,2009,360(1):44-52.

[24]Yiannikouris F,Gupte M,Putnam K,et al.Adipokines and blood pressure control.Current opinion in nephrology and hypertension,2010,19(2):195-200.

[25]Galletti F,D’Elia L,Barba G,et al.High-circulating leptin levels are associated with greater risk of hypertension in men independently of body mass and insulin resistance:results of an eight-year follow-up study.The Journal of clinical endocrinology and metabolism,2008,93(10):3922-3926.

[26]Asferg C,Mogelvang R,Flyvbjerg A,et al.Leptin,not adiponectin,predicts hypertension in the Copenhagen City Heart Study.American journal of hypertension,2010,23(3):327-333.

[27]Considine RV,Sinha MK,Heiman ML,et al.Serum immunoreactive-leptin concentrations in normal-weight and obese humans.The New England journal of medicine,1996,334(5):292-5.

[28]Hall JE,da Silva AA,do Carmo JM,et al.Obesity-induced hypertension:role of sympathetic nervous system,leptin,and melanocortins.The Journal of biological chemistry,2010,285(23):17271-17276.

[29]Xiong XQ,Chen WW,Han Y,et al.Enhanced adipose afferent reflex contributes to sympathetic activation in diet-induced obesity hypertension.Hypertension,2012,60(5):1280-1286.

[30]Xiong XQ,Chen WW,Zhu GQ.Adipose afferent reflex:sympathetic activation and obesity hypertension.Acta physiologica,2014,210(3):468-478.

[31]Yang D,Luo Z,Ma S,et al.Activation of TRPV1by dietary capsaicin improves endothelium-dependent vasorelaxation and prevents hypertension.Cell metabolism,2010,12(2):130-141.

[32]Zhang LL,Yan Liu D,Ma LQ,et al.Activation of transient receptor potential vanilloid type-1channel prevents adipogenesis and obesity.Circulation research,2007,100(7):1063-1070.

[33]Li L,Chen J,Ni Y,et al.TRPV1activation prevents nonalcoholic fatty liver through UCP2upregulation in mice.Pflugers Archiv:European journal of physiology,2012,463(5):727-732.

[34]Wang P,Yan Z,Zhong J,et al.Transient receptor potential vanilloid 1activation enhances gut glucagon-like peptide-1secretion and improves glucose homeostasis.Diabetes,2012,61(8):2155-2165.

[35]Li L,Wang F,Wei X,et al.Transient Receptor Potential Vanilloid 1Activation by Dietary Capsaicin Promotes Urinary Sodium Excretion by Inhibiting Epithelial Sodium Channel alpha Subunit-Mediated Sodium Reabsorption.Hypertension,2014,64(2):397-404.

[36]Ma S,Yu H,Zhao Z,et al.Activation of the cold-sensing TRPM8channel triggers UCP1-dependent thermogenesis and prevents obesity.Journal of molecular cell biology,2012,4(2):88-96.

[37]Sun J,Yang T,Wang P,et al.Activation of cold-sensing transient receptor potential melastatin subtype 8antagonizes vasoconstriction and hypertension through attenuating RhoA/Rho kinase pathway.Hypertension,2014,63(6):1354-1363.

[38]Oriowo MA.Perivascular adipose tissue,vascular reactivity and hypertension.Med Princ Pract.2014Feb 6.[Epub ahead of print].

[39]Goodfriend TL.Obesity,sleep apnea,aldosterone,and hypertension.Current hypertension reports,2008,10(3):222-226.

[40]Aroor AR,Demarco VG,Jia G,et al.The role of tissue Renin-Angiotensin-aldosterone system in the development of endothelial dysfunction and arterial stiffness.Frontiers in endocrinology,2013,4:161.

[41]Hayden MR,Sowers KM,Pulakat L,et al.Possible Mechanisms of Local Tissue Renin-Angiotensin System Activation in the Cardiorenal Metabolic Syndrome and Type 2Diabetes Mellitus.Cardiorenal medicine,2011,1(3):193-210.

[42]Engeli S,Negrel R,Sharma AM.Physiology and pathophysiology of the adipose tissue renin-angiotensin system.Hypertension,2000,35(6):1270-1277.

[43]Aroor AR,McKarns S,Demarco VG,et al.Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance.Metabolism:clinical and experimental,2013,62(11):1543-1552.

[44]Sarzani R,Salvi F,Dessi-Fulgheri P,et al.Renin-angiotensin system,natriuretic peptides,obesity,metabolic syndrome,and hypertension:an integrated view in humans.Journal of hypertension,2008,26(5):831-843.

[45]Bomback AS,Klemmer PJ.Interaction of aldosterone and extracellular volume in the pathogenesis of obesity-associated kidney disease:a narrative review.American journal of nephrology,2009,30(2):140-146.

[46]Wang H,Shimosawa T,Matsui H,et al.Paradoxical mineralocorticoid receptor activation and left ventricular diastolic dysfunction under high oxidative stress conditions.Journal of hypertension,2008,26(7):1453-1462.

[47]Grubbs V,Lin F,Vittinghoff E,et al.Body mass index and early kidney function decline in young adults:a longitudinal analysis of the CARDIA(Coronary Artery Risk Development in Young Adults)study.Am J Kidney Dis,2014,63(4):590-597.

[48]DeFronzo RA.Insulin and renal sodium handling:clinical implications.Int J Obes,1981,5suppl 1:93-104.

[49]Lee YJ,Lee YJ,Han HJ.Regulatory mechanisms of Na(+)/glucose cotransporters in renal proximal tubule cells.Kidney international Supplement,2007,106:S27-35.

[50]Bautista R,Manning R,Martinez F,et al.Angiotensin II-dependent increased expression of Na+-glucose cotransporter in hypertension.Am J Physiol Renal Physiol,2004,286(1):F127-133.

[51]Ghezzi C,Wright EM.Regulation of the human Na+-dependent glucose cotransporter hSGLT2.American journal of physiology Cell physiology,2012,303(3):C348-354.

[52]Weisbrod RM,Shiang T,Al Sayah L,et al.Arterial stiffening precedes systolic hypertension in diet-induced obesity.Hypertension,2013,62(6):1105-1110.

[53]Cao J,Peterson SJ,Sodhi K,et al.Heme oxygenase gene targeting to adipocytes attenuates adiposity and vascular dysfunction in mice fed a high-fat diet.Hypertension,2012,60(2):467-475.

[54]Brillante DG,O’Sullivan AJ,Howes LG.Arterial stiffness in insulin resistance:the role of nitric oxide and angiotensin II receptors.Vasc Health Risk Manag,2009,5(1):73-78.

[55]Muniyappa R,Sowers JR.Role of insulin resistance in endothelial dysfunction.Reviews in endocrine &metabolic disorders,2013,14(1):5-12.

[56]Belin de Chantemele EJ,Mintz JD,Rainey WE,et al.Impact of leptin-mediated sympatho-activation on cardiovascular function in obese mice.Hypertension,2011,58(2):271-279.

[57]Leopold JA.Cellular and molecular mechanisms of arterial stiffness associated with obesity.Hypertension,2013,62(6):1003-1034.

[58]Stenmark KR,Yeager ME,El Kasmi KC,et al.The adventitia:essential regulator of vascular wall structure and function.Annual review of physiology,2013,75:23-47.

[59]Sehgel NL,Zhu Y,Sun Z,et al.Increased vascular smooth muscle cell stiffness:a novel mechanism for aortic stiffness in hypertension.American journal of physiology Heart and circulatory physiology,2013,305(9):H1281-287.

[60]Troke RC,Tan TM,Bloom SR.The future role of gut hormones in the treatment of obesity.Therapeutic advances in chronic disease,2014,5(1):4-14.

[61]Delzenne NM,Neyrinck AM,Backhed F,et al.Targeting gut microbiota in obesity:effects of prebiotics and probiotics.Nature reviews Endocrinology,2011,7(11):639-46.

[62]Tilg H,Kaser A.Gut microbiome,obesity,and metabolic dysfunction.The Journal of clinical investigation,2011,121(6):2126-2132.

[63]Aroor A,McKarns S,Nistala R,et al.DPP-4Inhibitors as Therapeutic Modulators of Immune Cell Function and Associated Cardiovascular and Renal Insulin Resistance in Obesity and Diabetes.Cardiorenal medicine,2013,3(1):48-56.

[64]Shah Z,Kampfrath T,Deiuliis JA,et al.Long-term dipeptidyl-peptidase 4inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis.Circulation,2011,124(21):2338-2349.

[65]Hadjiyanni I,Siminovitch KA,Danska JS,et al.Glucagon-like peptide-1receptor signalling selectively regulates murine lymphocyte proliferation and maintenance of peripheral regulatory T cells.Diabetologia,2010,53(4):730-740.

[66]Turnbaugh PJ,Ley RE,Mahowald MA,et al.An obesity-associated gut microbiome with increased capacity for energy harvest.Nature,2006,444(7122):1027-1031.

[67]Geurts L,Lazarevic V,Derrien M,et al.Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice:impact on apelin regulation in adipose tissue.Frontiers in microbiology,2011,2:149.

[68]Ley RE,Turnbaugh PJ,Klein S,et al.Microbial ecology:human gut microbes associated with obesity.Nature,2006,444(7122):1022-1023.

[69]Le Chatelier E,Nielsen T,Qin J,et al.Richness of human gut microbiome correlates with metabolic markers.Nature,2013,500(7464):541-546.

[70]Cotillard A,Kennedy SP,Kong LC,et al.Dietary intervention impact on gut microbial gene richness.Nature,2013,500(7464):585-588.

[71]Zhong J,Rao X,Rajagopalan S.An emerging role of dipeptidyl peptidase 4(DPP4)beyond glucose control:potential implications in cardiovascular disease.Atherosclerosis,2013,226(2):305-314.

[72]Van Oudenhove L.Does the gut-brain axis control anticipatory food reward?Novel insights from bariatric surgery.Gut,2014,63(6):868-869.

[73]Aron-Wisnewsky J,Dore J,Clement K.The importance of the gut microbiota after bariatric surgery.Nature reviews Gastroenterology&hepatology,2012,9(10):590-598.

[74]Straznicky N,Grassi G,Esler M,et al.European Society of Hypertension Working Group on Obesity Antihypertensive effects of weight loss:myth or reality?Journal of hypertension,2010,28(4):637-643.

[75]Annalisa N,Alessio T,Claudette TD,et al.Gut microbioma population:an indicator really sensible to any change in age,diet,metabolic syndrome,and life-style.Mediators of inflammation,2014,2014:901308.

[76]Seimon RV,Taylor P,Little TJ,et al.Effects of acute and longer-term dietary restriction on upper gut motility,hormone,appetite,and energy-intake responses to duodenal lipid in lean and obese men.The American journal of clinical nutrition,2014,99(1):24-34.

[77]Siebenhofer A,Jeitler K,Berghold A,et al.Long-term effects of weight-reducing diets in hypertensive patients.The Cochrane database of systematic reviews,2011,9:CD008274.

[78]Jensen MD,Ryan DH,Apovian CM,et al.2013AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults:A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society.Circulation,2014,129(25Suppl 2):S102-138.

[79]Thomas DE,Elliott EJ,Baur L.Low glycaemic index or low glycaemic load diets for overweight and obesity.The Cochrane database of systematic reviews,2007,3:CD005105.

[80]Fagard RH.Exercise is good for your blood pressure:effects of endurance training and resistance training.Clin Exp Pharmacol Physiol,2006,33(9):853-856.

[81]Cornelissen VA,Fagard RH,Coeckelberghs E,et al.Impact of resistance training on blood pressure and other cardiovascular risk factors:a meta-analysis of randomized,controlled trials.Hypertension,2011,58(5):950-958.

[82]中华医学会内分泌学分会肥胖学组.中国成人肥胖症防治专家共识.中华内分泌代谢杂志,2011,27(9):711-717.

[83]Aucott L,Rothnie H,McIntyre L,et al.Long-term weight loss from lifestyle intervention benefits blood pressure?:a systematic review.Hypertension,2009,54(4):756-762.

[84]Neter JE,Stam BE,Kok FJ,et al.Influence of weight reduction on blood pressure:a meta-analysis of randomized controlled trials.Hypertension,2003,42(5):878-884.

[85]Rolland C,Johnston KL,Lula S,et al.Long-term weight loss maintenance and management following a VLCD:a 3-year outcome.International journal of clinical practice,2014,68(3):379-387.

[86]Sherwood NE,Crain AL,Martinson BC,et al.Enhancing long-term weight loss maintenance:2year results from the Keep It Off randomized controlled trial.Preventive medicine,2013,56(3-4):171-177.

[87]Jones DW,Hall JE.Seventh report of the Joint National Committee on Prevention,Detection,Evaluation,and Treatment of High Blood Pressure and evidence from new hypertension trials.Hypertension,2004,43(1):1-3.

[88]Liu D,Yang D,He H,et al.Increased transient receptor potential canonical type 3channels in vasculature from hypertensive rats.Hypertension,2009,53(1):70-76.

[89]Li L,Luo Z,Yu H,et al.Telmisartan improves insulin resistance of skeletal muscle through peroxisome proliferator-activated receptordelta activation.Diabetes,2013,62(3):762-774.

[90]He H,Yang D,Ma L,et al.Telmisartan prevents weight gain and obesity through activation of peroxisome proliferator-activated receptor-delta-dependent pathways.Hypertension,2010,55(4):869-879.

[91]Marchionne EM,Diamond-Stanic MK,Prasonnarong M,et al.Chronic renin inhibition with aliskiren improves glucose tolerance,insulin sensitivity,and skeletal muscle glucose transport activity in obese Zucker rats.Am J Physiol Regul Integr Comp Physiol,2012,302(1):R137-142.

[92]Dorresteijn JA,Schrover IM,Visseren FL,et al.Differential effects of renin-angiotensin-aldosterone system inhibition,sympathoinhibition and diuretic therapy on endothelial function and blood pressure in obesity-related hypertension:a double-blind,placebo-controlled cross-over trial.Journal of hypertension,2013,31(2):393-403.

[93]Jordan J,Engeli S,Boye SW,et al.Direct Renin inhibition with aliskiren in obese patients with arterial hypertension.Hypertension,2007,49(5):1047-1055.

[94]Go AS,Bauman M,King SM,et al.An Effective Approach to High Blood Pressure Control:A Science Advisory From the American Heart Association,the American College of Cardiology,and the Centers for Disease Control and Prevention.Hypertension,2014,63(4):878-885.

[95]James PA,Oparil S,Carter BL,et al.2014Evidence-Based Guideline for the Management of High Blood Pressure in Adults:Report From the Panel Members Appointed to the Eighth Joint National Committee(JNC 8).JAMA,2014,311(5):507-520.

[96]Weber MA,Schiffrin EL,White WB,et al.Clinical practice guidelines for the management of hypertension in the community a statement by the american society of hypertension and the international society of hypertension.Journal of hypertension,2014,32(1):3-15.

[97]Mancia G,Fagard R,Narkiewicz K,et al.2013ESH/ESC Guidelines for the management of arterial hypertension:the Task Force for the management of arterial hypertension of the European Society of Hypertension(ESH)and of the European Society of Cardiology(ESC).Journal of hypertension,2013,31(7):1281-1357.

[98]中国高血压防治指南修订委员会.中国高血压防治指南2010.中华高血压杂志,2011,19(8):701-743.

[99]Grimm C,Koberlein J,Wiosna W,et al.New-onset diabetes and antihypertensive treatment.GMS health technology assessment,2010,6:Doc03.doi:10.3205/hta000081.

[100]Dombrowski SU,Knittle K,Avenell A,et al.Long term maintenance of weight loss with non-surgical interventions in obese adults:systematic review and meta-analyses of randomised controlled trials.BMJ,2014;348:g2646doi:10.1136/bmj.g2646(Published 14May 2014).

[101]Siebenhofer A,Jeitler K,Horvath K,et al.Long-term effects of weight-reducing drugs in hypertensive patients.The Cochrane database of systematic reviews,2013,3:CD007654.

[102]Filippatos TD,Derdemezis CS,Gazi IF,et al.Orlistat-associated adverse effects and drug interactions:a critical review.Drug safety:an international journal of medical toxicology and drug experience,2008,31(1):53-65.

[103]WHO.Obesity and overweight:Key facts.2011http:/wwwwhoint/mediacentre/factsheets/fs311/en/indexhtml.

[104]Desilets AR,Dhakal-Karki S,Dunican KC.Role of metformin for weight management in patients without type 2diabetes.The Annals of pharmacotherapy,2008,42(6):817-826.

[105]Charles MA,Eschwege E,Grandmottet P,et al.Treatment with metformin of non-diabetic men with hypertension,hypertriglyceridaemia and central fat distribution:the BIGPRO 1.2trial.Diabetes/metabolism research and reviews,2000,16(1):2-7.

[106]Zhang TX,Xu JX,Peng F,et al.Metformin reduces vascular endothelial dysfunction caused by an acute glucose load in patients with hypertension.Blood pressure,2013,22(2):106-113.

[107]Levri KM,Slaymaker E,Last A,et al.Metformin as treatment for overweight and obese adults:a systematic review.Annals of family medicine,2005,3(5):457-461.

[108]Seifarth C,Schehler B,Schneider HJ.Effectiveness of metformin on weight loss in non-diabetic individuals with obesity.Experimental and clinical endocrinology &diabetes:official journal,German Society of Endocrinology[and]German Diabetes Association,2013,121(1):27-31.

[109]He H,Zhao Z,Chen J,et al.Metformin-based treatment for obesity-related hypertension:a randomized,double-blind,placebocontrolled trial.Journal of hypertension,2012,30(7):1430-1439.

[110]邢小燕,李玉凤,付佐娣,等.二甲双胍在伴高胰岛素血症原发性高血压人群中降血压作用探讨.中华内科杂志,2010,49(1):14-18.

[111]Wang B,Zhong J,Lin H,et al.Blood pressure-lowering effects of GLP-1receptor agonists exenatide and liraglutide:a meta-analysis of clinical trials.Diabetes,obesity &metabolism,2013,15(8):737-749.

[112]Katout M,Zhu H,Rutsky J,et al.Effect of GLP-1mimetics on blood pressure and relationship to weight loss and glycemia lowering:results of a systematic meta-analysis and meta-regression.American journal of hypertension,2014,27(1):130-139.

[113]Astrup A,Rossner S,Van Gaal L,et al.Effects of liraglutide in the treatment of obesity:a randomised,double-blind,placebo-controlled study.Lancet,2009,374(9701):1606-1616.

[114]Kelly AS,Rudser KD,Nathan BM,et al.The effect of glucagon-like peptide-1receptor agonist therapy on body mass index in adolescents with severe obesity:a randomized,placebo-controlled,clinical trial.JAMA pediatrics,2013,167(4):355-360.

[115]Neff LM,Kushner RF.Emerging role of GLP-1receptor agonists in the treatment of obesity.Diabetes,metabolic syndrome and obesity:targets and therapy,2010,3:263-273.

[116]Acosta A,Abu Dayyeh BK,Port JD,et al.Recent advances in clinical practice challenges and opportunities in the management of obesity.Gut,2014,63(4):687-695.

[117]Poirier P,Cornier MA,Mazzone T,et al.Bariatric surgery and cardiovascular risk factors:a scientific statement from the American Heart Association.Circulation,2011,123(15):1683-1701.

[118]Dixon JB,Zimmet P,Alberti KG,et al.Bariatric surgery:an IDF statement for obese Type 2diabetes.Diabetic medicine:ajournal of the British Diabetic Association,2011,28(6):628-642.

[119]American Diabetes A.Standards of medical care in diabetes-2013.Diabetes care,2013,36Suppl 1:S11-66.

[120]中华医学会外科学分会内分泌外科学组,中华医学会外科学分会腹腔镜与内镜外科学组,中华医学会外科学分会胃肠外科学组,等.中国肥胖病外科治疗指南(2007).中国实用外科杂志,2007,27(10):759-762.

[121]中华医学会糖尿病学分会.中国2型糖尿病防治指南(2010年版).中国糖尿病杂志,2012,20(1):S1-S36.

[122]杨建江,倪银星,何洪波,等.腹腔镜Roux-en-Y胃转流术对2型糖尿病患者术后近期血压的影响第三军医大学学报,2013,35(9):828-831.

[123]Colquitt JL,Pickett K,Loveman E,et al.Surgery for weight loss in adults.The Cochrane database of systematic reviews,2014,8:CD003641.

[124]Ionut V,Burch M,Youdim A,et al.Gastrointestinal hormones and bariatric surgery-induced weight loss.Obesity,2013,21(6):1093-1103.

[125]Bhatt DL,Kandzari DE,O’Neill WW,et al.A controlled trial of renal denervation for resistant hypertension.The New England journal of medicine,2014,370(15):1393-1401.

[126]Taddei S,Bruno RM.Renal denervation:still more questions than answers.Journal of hypertension,2014,32(1):28-29.

[127]蒋雄京.中国高血压联盟关于经皮经导管射频消融去肾交感神经术治疗难治性高血压的立场与建议.中华高血压杂志,2013,21(5):419-423.