![近代光学](https://wfqqreader-1252317822.image.myqcloud.com/cover/677/683677/b_683677.jpg)
5.3 光纤[21],[58],[59],[63],[65],[67],[68]
前面对平板介质波导和矩形介质波导进行了分析。这里将对广泛应用于远距离、大容量通信的光纤进行分析。通常光纤是一种圆柱形的波导,按照其折射率的径向变化可分为阶跃光纤、渐变折射率光纤等。还有一些特殊的光纤,例如双折射光纤、椭圆光纤、蝴蝶结光纤等。本节将简单介绍阶跃光纤的电磁场理论。
5.3.1 导模与本征方程
由于光纤具有圆柱形结构,采用柱坐标系讨论比较方便。设光纤的轴沿z轴方向,纤芯半径为a,折射率为n1,包层折射率为n2,如图5.3-1所示。
在柱坐标系中,电磁波的电场强度E和磁场强度H分别表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0011.jpg?sign=1739296425-pTuY9RKm7114WJbDXGzwiDUItSar0cnO-0-05ac905f728811d5a8a5fad193330ca8)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0012.jpg?sign=1739296425-SrIVt4LYFbZ2OZ6yOdsS3tHipv3gLH8H-0-9f17bc4fd72602ffcfcc28dd2e577bd6)
设时谐电磁波沿z轴传播,则光场各分量与坐标z、时间t相关的因子可以写成expi[ (βz-ωt)],将该因子代入柱坐标系中麦克斯韦方程的两个旋度方程可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0013.jpg?sign=1739296425-bggdP4BP03nhmnJksLovTCNw6D2J3NWB-0-ec27cfab3444e440dd099d2102aaa094)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0001.jpg?sign=1739296425-zi4NcuBrD2nvkLz3pK0rMX4lqQOfx2mY-0-388a02f2ee89a552df6c33a49efc328a)
图5.3-1 光纤的柱坐标系
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0002.jpg?sign=1739296425-BtPlww4TfcLqgw05qhom7sMLQ2b8LGOr-0-be9a1bac0a8bcebc5c9fb1c15b8a8b74)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0003.jpg?sign=1739296425-s7wMLFPvY7JKarcmGFfF8fO0y16JrxLk-0-80e5db229b2bc44014f165b3a79a4736)
及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0004.jpg?sign=1739296425-SKD7q09oZevTL9XvcI6DXsihJvH0HZB9-0-6e52e7b81101d048e549a41ab478cd01)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0005.jpg?sign=1739296425-UpNrXPAHStiRBko44qxotgvgGpOepyQJ-0-f717876322247a1fd393b6f49f630e99)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0006.jpg?sign=1739296425-ffcUT0N8hDjjHnGUwqn7XF10ghxs414c-0-27304e5ab1255748c505c73c31fb616c)
如果介质中没有自由电荷与传导电流,Ez、Hz满足标量亥姆霍兹方程,在柱坐标系中可以写成
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0007.jpg?sign=1739296425-dtInlgYMBohR0GqLzF9ckgnQgPlCnZcn-0-1c8dda780fb1d1b502906d3a6eaa6817)
式中,ψ表示Ez或Hz。
采用分离变量法求解方程(5.3-4),设试探解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0008.jpg?sign=1739296425-kA90KivDXwOcy43P727RWeD6Fgzd1obH-0-92f77d726aca1b11e97b245553674065)
其中,m=0,1,2,3,…,将上式代入式(5.3-4)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0009.jpg?sign=1739296425-ncdDKcmYRZvTmrt8jfJaI01A4ku7O0X8-0-4ca162bc8d19d0f016451bb08113bda6)
方程(5.3-6)是贝塞尔方程。令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0010.jpg?sign=1739296425-YaZniJTM6WVOZiKUhAzIRgNq8ecHWU8Q-0-ec6cf55530f9e3afc40de85f2546f02f)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0011.jpg?sign=1739296425-lF4QPeOUElN8YHGHvBj7fZLOPuOq7Ko3-0-749b7ce36e37621d8602fe8eb5c9f69c)
则在芯层,方程(5.3-6)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0012.jpg?sign=1739296425-u0qKdTyWpoZUAWsXE0ySaTaaUaiUHdlN-0-9cc7892d46f6245eb387160239bd41b8)
在包层,方程(5.3-6)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0013.jpg?sign=1739296425-LU1qmmTZu9XL82Y4MdsGtlcMbCDPKw9M-0-53c874b05eb9e63ca32bbddde4534607)
考虑到在光纤中传播的电磁场必须满足:当r<a时,E(r)有限;当r>a时,E(r)趋于0。因此可以取的解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0014.jpg?sign=1739296425-ofYn6aMqxoJVSAWUVOc49VSDaJR3tUuT-0-ebd0b247e052a37582e4e9c60c621a43)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0015.jpg?sign=1739296425-f3GcypKYJNpdnIufLonNm66mCieuvQ2Q-0-777be94342af038fae3d9415fadcf6e3)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0001.jpg?sign=1739296425-0UGlZEC7gqImMeFvsr2QZRVaWCwtI471-0-af7273c4347157debfff913f4bac680b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0002.jpg?sign=1739296425-EBsTDRv3FiYJU13AXJyh2sBMTJpv9dsQ-0-f8bd59fa2aca72b29b202b2ae129a336)
式中,。令Ua=U/a,Wa=W/a,Ua、Wa分别代表光纤芯内的横向相位常数和包层内的衰减系数。Jm,Km分别为第一类贝塞尔函数和第二类修正贝塞尔函数(汉克尔函数),图5.3-2(a)所示为几个低阶的第一类贝塞尔函数曲线,图5.3-2(b)所示为几个低阶的第二类修正贝塞尔函数曲线。
在芯层与包层的边界处,电场和磁场的切向分量连续,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0004.jpg?sign=1739296425-Gj3kl5IUah1X9uTE84LK4tyLg1kjyVR7-0-a1ef037dff02de6da45e45b5d742af89)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0005.jpg?sign=1739296425-5Fmq0DySB92BLakVzP2kJIPFxwTsbotp-0-5f0b342d7fc0896bf409bcfab92e7e76)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0006.jpg?sign=1739296425-sCkaKgFwADVy1QQweazqnyzDuQacmb6z-0-327d865dd133b4fe5530479636ee1604)
图5.3-2 两种贝塞尔函数曲线
将式(5.3-9)代入式(5.3-10),得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0007.jpg?sign=1739296425-kb6NdGHXH5gUAAKISAnrZIdy1ePZHFP8-0-8ff921ab5a129bfd8d8941b66f46c4b8)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0008.jpg?sign=1739296425-Oxwdq7kXdv6iuxcq0Zt07i76wlvbvVa6-0-34adc094804e66e423a9b109dceb331a)
令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0009.jpg?sign=1739296425-1iKwATDzN7bgnvSsf4ogpJycwQmEQCxU-0-cb3336f796ebbe24283c2e7254089c4f)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0010.jpg?sign=1739296425-vRfbHCaUOoGUWLwcTM6AlEFkw3zjilPp-0-eb875820be440986804d9628553245f7)
这样,可以将纵向电场分量和纵向磁场分量表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0001.jpg?sign=1739296425-QsVtqI6Q6Hoc9F4XaE2B6bVWibYTcFLV-0-31857a322bb06e29444a36cff16770cf)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0002.jpg?sign=1739296425-g88Lis9XWIWzIsIbsE0ueWOQM84wgUTQ-0-55c62b048520f306f124320d80cf5dad)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0003.jpg?sign=1739296425-1LBDqPIBi4ZJFpFPyVmC7YFa2gzgqXvE-0-4fc0b94b885278180fe7ed4db870ff69)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0004.jpg?sign=1739296425-oC6sykXgyvnIJpnzZC4BOAEoCbKsKVsj-0-6839e8a8339b50973bf67710fbdca813)
上面表示中略写了各项共同因子exp i[ (βz+mθ-ωt)]。求出纵向分量Ez、Hz 后,就可根据式(5.3-2)和式(5.3-3)求出其他横向分量,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0005.jpg?sign=1739296425-Wu3csa7ZvWzXxgE1ZVKr8EuLGSyiyJMl-0-004d1d4333994812ce2a833501d5b775)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0006.jpg?sign=1739296425-RZ58NxWPkb869vMzsVPluN2SXpomemBU-0-a6e3ebc0849b32388d52a1c5e1c59bf4)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0007.jpg?sign=1739296425-M3W7iap9LrvAYbfmG0lmAELeBZ0sJJtd-0-21b7979879b761e5d053817e7ff13ca4)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0008.jpg?sign=1739296425-KrF5KGWNdFntx64ExzlwjWCQK9GQv7OO-0-728f5d209fbc06e67e088c5b917c7e11)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0009.jpg?sign=1739296425-MKqtRwWOMvOU6ANbem5NEdXvSHrcQSTr-0-15dea3ad6e218548677f833fbdede5b9)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0010.jpg?sign=1739296425-8zqKM3cVvEifwAk1RmtGT7OKWmZYrQ9z-0-af0827f54c365cf11986a85dc5175999)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0011.jpg?sign=1739296425-FtybPXP44mS1cY7GnVFe8sPCF6LKnUWX-0-056fe5425d8456ae0aeb34406afd2fc7)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0012.jpg?sign=1739296425-DCVyUCr68XBy5jIEjaTWikkmSTwa4DNP-0-0c89b82bc59e1bcdb7a8278989844813)
将式(5.3-13)各式分别代入式(5.3-14)中对应式,得到电场和磁场的横向分量,依次写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0013.jpg?sign=1739296425-gHufQ310w2xaVtKsb8sDKoO6OS1tDjAC-0-b57ef4af0b093cd5190b9e17a46698e6)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0014.jpg?sign=1739296425-q8hba2nAcHflXV8GNurD6FRrWSoh2emR-0-708221ae35e0c722e331c23e7ec0fd1c)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0015.jpg?sign=1739296425-EG9zIq1vJgD7SXi122ubqSnwmkWQRq3g-0-a3ea406158ba2f9f0be23175fef7ea80)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0016.jpg?sign=1739296425-FMKJMXAsH6KI2Ep1w55UCwZnZicjqKDu-0-0fe727ab107daea16aaaa5e0eb7854a5)
以及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0017.jpg?sign=1739296425-Bdwm3HgRBb5oIxuHapZZBigyDvqWwfag-0-9134dc42301bc2d8d377b5057b44a86f)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0001.jpg?sign=1739296425-cgjJqKaBQGgdA7RgfK6AADS5YpGglZ5z-0-33a44b461b55c1d78009a61fd10ff391)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0002.jpg?sign=1739296425-VfIO4fz4wDCdDWTJQLcIzGDUpgPcAOv9-0-f187f2394c73e6ebfc143b0f89459d70)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0003.jpg?sign=1739296425-sBSmZGwLijQyfuipevS6ZtbMUSR4qwsk-0-edd3b0088d486a56bcf30630e4534729)
式中,J、K上面的“·”号表示对r的一阶导数。利用纤芯和包层界面处电磁场连续的边界条件,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0004.jpg?sign=1739296425-LdZodHRFtjRbry2Cz55tCwiUIFLsWvwD-0-915dc7d51698558044ef036665642d97)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0005.jpg?sign=1739296425-XnCC3Mjb8jG50Xd5Ep1MQBwKQMHlZAVg-0-50171ed13aafd0e04a25ac4bd06b1287)
将式(5.3-15c)、式(5.3-15d)代入式(5.3-17a),以及将式(5.3-16c)、式(5.3-16d)代入式(5.3-17b)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0006.jpg?sign=1739296425-NANzI0GT3NsCdznQZGyCis0XUBpidxyG-0-120871f955c54f624094cbdd187fd969)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0007.jpg?sign=1739296425-aek0nBUeRmxxkexgo1BLqJxXDl1JKWIc-0-b02a6b432c068c16d3f73ebbcd1da97e)
注意,式(5.3-18a)与式(5.3-18b)右边相等,经过整理得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0008.jpg?sign=1739296425-KUbEdpXEz2MaPVc6KjD6Y68XgfIu7ayR-0-ed18a1e92895751eb49d6084ed519cc8)
上式即为光纤的本征方程,式中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0009.jpg?sign=1739296425-Fx8UveSYzFh6IXGp8RFrv2qb24aaJLqI-0-29fef78ee64a70184d6e797651e7c337)
V称为归一化频率。式(5.3-20)中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0010.jpg?sign=1739296425-8hYbda1dMLqxtCRkfMzky2vYyEyhJBXN-0-9a2d2e2a0c35e4b6ce72b6ae5546ac06)
将式(5.3-19)与式(5.3-20)联立,可以求出在一定波导结构和波长情况下U、W、β各参量。在弱导条件下,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0011.jpg?sign=1739296425-k522x5iliVY7HSVISoeV0MY3UNy5KNww-0-8883882441b139798efdf33d96a5e7e5)
式(5.3-19)可以化简为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0012.jpg?sign=1739296425-OlX9AoxJBAd64keAtPy9j7qgPAVEWHRb-0-e9e28f4fa52468a59f65dd535268c93c)
式中,m=0,1,2,3,…。
5.3.2 导模的分类
光纤中的导模包括TE模、TM模、EH模和HE模,下面依次简单介绍。
1.TE模和TM模
TE模对应于纵向电场Ez=0的电磁场模式。根据Ez表达式可知,对TE模有A=0,进一步可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0013.jpg?sign=1739296425-sX7Do4S5t9AHaANRjzFGyOc2LLp8rzu7-0-e68ca5ecb9652da9e1b8e07f99f8a148)
由于B、β、U、W均不为零,因此上式成立的条件为m=0。此时,有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0001.jpg?sign=1739296425-K5Yc336n5RZHzrzcnMSA1hmM8pmNspIL-0-23db73d72b1411c014aebdeeb067a2f1)
上式为TE模的本征方程。利用贝塞尔函数的性质
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0002.jpg?sign=1739296425-ynefFDK1k1nI3eipsjrdU4JfcLcWOBDV-0-eeedc5da48050da3c322949ff178ee34)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0003.jpg?sign=1739296425-3urD5LlPckbpt7ZVPJA3xISZXfpdXjpU-0-a553b2509b047a78160eaa37653a998e)
可以将式(5.3-25)表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0004.jpg?sign=1739296425-1iK3fDNgFIfbMmZMOrf1poq4craHLv2e-0-415bddee2f1555e748d9200e13595771)
TM模对应于纵向磁场Hz=0的电磁场模式。由Hz的表达式可知,对TM模,有B=0,类似分析可得m=0。于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0005.jpg?sign=1739296425-jYW68uKguWvYVhNsWdUZ31o4VXceLB0b-0-ba3cedc80f7ce25cf1f7eee8425804bc)
上式为TM模的本征方程。
2.EH模和HE模
当m≠0时,A、B都不为零,表明Ez、H z将同时存在,不存在单独的TE模、T M模。这种Ez、H z同时存在的模式称为混合模,其中当Ez起主导作用时,称为EH模;当H z起主导作用时,称为HE模。
在弱导条件下,EH模和HE模的本征方程分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0006.jpg?sign=1739296425-BWt86G5OhPc0Tk1b7GXWUJYh3y6MtAkM-0-326d868846cceffeb9324211f90e903e)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0007.jpg?sign=1739296425-N6YtHd4AkBmmXUweA5yYSJ7WDjHne3O6-0-5e1390d0d54137eb08111ab44f84c675)
利用贝塞尔函数的性质
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0008.jpg?sign=1739296425-GVfiEmrKEXUpOWQmJeUu3EnkfeiMSNly-0-46ef8419e999fd0f9f3170a999f2ab8d)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0009.jpg?sign=1739296425-I7k6ekdfx5it82Vi9Ech0Mjym30aMrGs-0-12902ddcb61b4b6b78485c1ec8bcb259)
化简后得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0010.jpg?sign=1739296425-CQs9hAlVCAHt0u1Rsj1MkXcmr1sUdj8m-0-1c48d0a112104336773266026390fd86)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0011.jpg?sign=1739296425-2GP68w4LrHNd4fqfAnFUt1sAzeuFoRFs-0-2c280b4356f3bf24e554d31d6b3eed73)
5.3.3 导模的截止条件和截止波长
1.导模的截止条件
当导模在波导中传播时,主要能量集中在波导芯层,沿纵向无衰减传播,U、W参量均为正数,导模场在芯层为振荡函数,由贝塞尔函数描写;而在包层中,导模场为指数衰减函数,由汉克尔函数描写。
U、W参量均为正数的条件为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0012.jpg?sign=1739296425-DtdoAV8FOcyHzMWPOGc5ne5WNn2bDjE5-0-e2128477d8bb14cd7e89fb4d4cfaa341)
如果,则W2<0,包层中场量的解变成振荡解,即出现辐射模,导致光场能量不能集中在波导芯层传播而截止。W=0为导模与辐射模的临界情况。因此截止条件为W=0,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0014.jpg?sign=1739296425-Iwcnr0Sl33PElz9D3bW0td1KBNcaWnW5-0-919279ff8c072729a437a6082b8c81ea)
归一化频率Vc满足
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0001.jpg?sign=1739296425-MyUGsBEVZigsLbOMkiiCtyCbk7d0dub4-0-c7cf3433bdb613c2a48956df2071e308)
即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0002.jpg?sign=1739296425-jG0voZ2H8Pb8WNVUNDZvAssnRoYlqyMZ-0-8adf3773e336e2ba6fd41d004896f612)
通过本征方程求得Uc,进而确定Vc,最后获得各种模式的截止频率。
2.TE0n模和TM0n模的截止波长
对于TE0n模和TM0n模,因为m=0,所以式(5.3-19)变为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0003.jpg?sign=1739296425-kbrhG59srTkaJskKuZVRHoYuKDvXrQ8Y-0-c388d67c4ed4c691b15fa2f88e9aa6e0)
等号左侧前后两个因式为零分别对应于TE0n模和TM0n模。当W→0时,式(5.3-36)要求J0(U)=0,这就是TE0n模和TM0n模的截止条件。因为J0(U)是个振荡函数,它有许多根,不同的根对应不同阶模的截止条件。当n=1时,U01=2.41(U01的下标01表示零阶贝塞尔函数的第一个根),说明当纤芯半径a满足方程U01≤2.41时,TE01模和TM01模就因为截止而不存在了。对于更高阶的模,即n=2,3,4,…可以依次类推。截止时,归一化频率为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0004.jpg?sign=1739296425-knWJ0IGfcF4MtOXEaeBkOt9ysNYjcO0E-0-e6d5f480d981f4f9f9fdac7c3f00a1d2)
当n=1时,对应的模TE01和TM01的归一化截止频率最低。由于U01=2.405,可得TE01(或TM01)模的截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0005.jpg?sign=1739296425-PbbKKk3kRCw8D94ZNEa54Tt63EUgWVxR-0-d8f80c87a369c07739920c07fc7e5743)
当光纤的其他参量一定时,若λ≥λc,则相应的模式不能在波导中传播。
3.HE mn模的截止波长
截止时,W=0。根据HE模的本征方程,当W→0时,式(5.3-31b)右边的渐进特性应区分为m=1与m≥2两种情况。下面就这两种情况进行讨论。
1)HE1n模
当m=1时,本征方程及其渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0006.jpg?sign=1739296425-kPfXfgkD7acjAIKpZfBVyd3r0zitqmbu-0-2f2438059e200afd849583fa5524ca95)
因此,当m=1时,HE模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0007.jpg?sign=1739296425-tXQ6Sx3aWNIZMI8s8BJRNvUkc480r80g-0-08f8afc4d94dc4a7c74cd45db8379435)
其解为Uc=0和J1(Uc)=0的根Uc=u1l,u1l表示一阶贝塞尔函数的第l个根。但Uc=0是否应舍弃需要进一步考察。因为当U→0时,J0(U)→1,因此是本征方程W→0时的解,应该保留。这样得HE1n模的截止参数为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0008.jpg?sign=1739296425-Wbjz4xm0NxhlHVPxM2MgK9Ead6SCv1rY-0-9d6765ea9498d3357371e70795c42bfd)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0009.jpg?sign=1739296425-xd2lJxqdH5XBG9RuqmbE0icbgYTeubuY-0-b5face66c1cd89ad09d5470ec3d20d32)
当n=1时,U11=0,对应的截止波长λc(HE11)=∞。说明HE11模没有截止限制,所以称为光波导中的优势模(即该模总是存在的)。
2)HEmn(m≥2)模
当m≥2时,Km(W)的渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0001.jpg?sign=1739296425-AqidAmP2jje9wnU6NhH5VVrvW6VhawZP-0-4913b41142ca994efd40ab4fbd6ca276)
利用贝塞尔函数递推关系
2mJm(U)=UJm-1(U)+UJm+1(U)
将式中阶数降1,即m→m-1,得
2(m-1)Jm-1(U)=UJm-2(U)+UJm(U)
因此当m≥2时,本征方程及其渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0002.jpg?sign=1739296425-7f1kHpmbgl2sdyMFYvzPkauJlZFZhUKZ-0-39d1739e94c36df27a40800a7360097f)
于是当m≥2时,HE模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0003.jpg?sign=1739296425-1C8V9QLMJByL75UQJHV4oroCmBmPHQHT-0-e7a9c256026e2c1d5ef98abefc96c347)
上式的解为m-2阶贝塞尔函数的根,于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0004.jpg?sign=1739296425-MD7cBwoyKlwbsgWByHulvwHGrhNb1ysK-0-ce9d380137c472d68266fae7973008f7)
对HE21模,U01=2.405,截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0005.jpg?sign=1739296425-GY2BZenkTsZiAPW75oEEjDt3LIlhJPRo-0-908713ffe3e4456c58a993f0263e1d1e)
容易验证,HE2n模与TE0n模、TM0n模具有相同的截止波长,它们是简并模。
4.EH mn(m≥1)模的截止条件
根据EH模的本征方程(5.3-31a),当W→0时,该式右边的渐进式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0006.jpg?sign=1739296425-pG3iBgBtM9kUg4zsIr4VyvgWBzlb6Whm-0-71aa3cf0ffe47574ee5e2d3ee71c7387)
因此有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0007.jpg?sign=1739296425-KSc0X4vUetbUt5IAeXTXNu8RUsQBvIJ4-0-bc7424aaeedda7161fb0fb8d77e0e899)
注意到当Uc→0时,上式的渐进式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0008.jpg?sign=1739296425-oRKqraav755NR9vpq6NTSiGIqd1RjU14-0-6b5aa63fb1aa87b5f9d6e18edf570ad2)
可见,截止时Uc≠0,因此当m≥1时,EH模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0009.jpg?sign=1739296425-P5VecNyEIUszaCHHJ4LaWQnD7nATmGJu-0-2f9ad6d10d786961d86906c9516c4e6f)
这里Uc≠0表示,Jm(Uc)=0的第一个根要从Uc≠0的根算起。这样,截止参数Uc或归一化截止频率Vc为m阶贝塞尔函数的根Umm,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0010.jpg?sign=1739296425-vvhWbz0O80VBrfY3Wr06K7fG0IHu3JCh-0-6857cee0e1090d1f17ab268c00231146)
例如,对EH11模,U11=3.832,截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0011.jpg?sign=1739296425-hw5E3MqcnyzZ8PNxHuI7fhRhdEIpNKZX-0-d42efdb34d8284a22e89772c74c5a887)
5.3.4 色散曲线
光纤中导模的传播特性与U、V、β等参数有关。U、V决定导模光场的横向分布;β决定导模光场的纵向分布。归一化频率V是与光波的频率、波导尺寸及折射率分布有关的无量纲参数。一旦归一化频率V给定后,则根据本征方程可以确定U、W等参数,并进一步获得纵向传播常数β,也即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0001.jpg?sign=1739296425-8OQPoeBmIfsrVhYfI97fEG0SqnNxU2ea-0-30d4e53accf21f0e5040ee05437c9520)
改变V的值可以得到不同的β,从而得到各种模式的β-V关系。另外,波的相速vp和群速vg分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0002.jpg?sign=1739296425-TdNm5TzMzpXqtvXAlTnnTNr9KtdrKDhg-0-e0cf0c6de026da6983ef550587a87c2d)
及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0003.jpg?sign=1739296425-sYRNxM0QjSf2aFQDKWS7owqxqUGosLRr-0-5fcacae8ca0a14ef051885e3ba79d4f1)
如果知道β-V关系,就等效于知道β-ω关系,即色散关系。根据色散关系,可以获得不同模式的群速和相速关系。图5.3-3所示为几个低阶模式的色散曲线。图中横轴表示归一化频率V,纵轴表示归一化相位。
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0005.jpg?sign=1739296425-VaSNcWQ7A6ZyaFgRL6VIGrREBwRG8iXA-0-8c99968801097a3191870bf7592ab7de)
图5.3-3 几个低阶模式的色散曲线