![近代光学](https://wfqqreader-1252317822.image.myqcloud.com/cover/677/683677/b_683677.jpg)
5.2 矩形介质波导[57~61],[66]
与平板波导仅在一个方向对光传播进行约束不同,矩形介质波导将在x和y方向对光加以限制(假设光沿z方向传播)。矩形波导的分析较为复杂。目前还没有一种严格的分析方法可以得到矩形波导的导模解析解。比较有名的分析方法包括马卡提里近似解法、有效折射率法、微扰法、圆谐函数展开法,以及有限元法等数值解法。
5.2.1 马卡提里近似解法
矩形介质波导结构如图5.2-1所示。这个波导由九个区域构成,其中四角的阴影区可不考虑,另外五个区域的折射率分别为n1、n2、n3、n4、n5。1969年,马卡提里提出一种分析矩形波导的方法,假定导模远离截止条件,导模携带的大部分能量被约束于区域I进行传输,在邻近的II、III、IV、V区域能量很少,而在对角的四个区域VI、VII、VIII、IX能量更少。该方法忽略对角四个区域的场分布,并且只考虑芯层四周界面的边界条件。当光被高度约束在芯层传播时,马卡提里方法可以得到很好的结果。另外,假定光场的纵向分量远小于其横向分量,导模波形近似为TEM波。在这种情况下,可以将导模分成横向分量为Ex、Hy的模式和横向分量为Ey、Hx的
模式。
模式表示电场振动方向沿x轴,并且光场沿x、y方向的极大值数目分别为m和n的一种场分布模式,
也有类似的含义。
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0178_0006.jpg?sign=1738862047-r1sqAgh4eaiI3nu9DZlPDj67sClEweht-0-a3ab3af16c4ae43f7661fe6b680e5099)
图5.2-1 矩形介质波导
1.模式分析
模的电场沿x方向振动,Ey=0。沿z方向波导均匀,且∂/∂z=iβ。时谐电磁波的电磁场方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0178_0009.jpg?sign=1738862047-iZdIWXBhC29XcJjnkYbULphP6P2nM55G-0-93e715552f370a94e0dda2bceb7a7c53)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0178_0010.jpg?sign=1738862047-SClKulCHNqt1t5PEHDKwAsLlNFasuTJq-0-0178e34fd5b149078bf02a40215c72ca)
将式(5.1-1)代入式(5.2-1),计算后写成分量形式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0178_0011.jpg?sign=1738862047-qePfeyopl2JLh5l9kxn1u1RTMai2YRB9-0-2e127384048eb7c2aebb5a8a9f760b8b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0178_0012.jpg?sign=1738862047-Yl4KE5r1Okcmgmi7i9fZPS0PAbaCpIwX-0-5c3bc361957a486ef6caa5490989099e)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0001.jpg?sign=1738862047-Vj8dcB7i7ASdyynLxHYQuUPaelM6n13i-0-5f8fbc052e107d75615dea03140fc632)
及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0002.jpg?sign=1738862047-p754BcJYpzmWrDtqouC7jQl4d6US0e5S-0-f603c1dac56c68d7519414d43b5faad7)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0003.jpg?sign=1738862047-soXdsMjCkXNDfKBhlEreCD7c6IocDdb5-0-ddc1a777304a2a57c7ef8143772b2115)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0004.jpg?sign=1738862047-DV53LMV2h0BydkVFb0x96WlHrERVDlQS-0-c35aa871f5520230904c04fe567a28c4)
由式(5.2-2)可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0005.jpg?sign=1738862047-y8BIIvCA5ZgYnEok56Is1pML7uByhVrF-0-4f9650e7475a92a3bb1904c9ca42727f)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0006.jpg?sign=1738862047-L4F2aGZfnbb3T3IZ7X6qLokffRxd4GnT-0-f098d29964d0b3e27518ea7d094b8953)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0007.jpg?sign=1738862047-5hfko6R8eiPXiIyeMtEYVGV027xg2oI1-0-d03073d7ac5ef165ef070f3a30a147c1)
另外,根据
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0008.jpg?sign=1738862047-ZiuRFlMiOciP6wbV4Ms6jkq3Zs36Aabm-0-805cd279366ca190ed50a86af1009375)
将上式表示成分量形式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0009.jpg?sign=1738862047-saGgFCeJrxWgVDM5wO51gwKHXBRWXv5q-0-ecc15260afe50f2ad2fd54b0f66fc3ef)
于是得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0010.jpg?sign=1738862047-4OMfeymZb0EMkI9UfmOL8QC8gLHPsNeQ-0-8b022bf86b2efe8ca7869db89961e6af)
其中,用到条件
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0011.jpg?sign=1738862047-Bp2lih8AbYYP6Jr5Mf6GThzzTZNGZEDB-0-6be893ce518ebfd286fcaca69c808f27)
即假定在同一介质中,折射率不随x坐标变化。
将式(5.2-4b)、式(5.2-4c)代入式(5.2-3a),经过整理得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0012.jpg?sign=1738862047-vGDKj5Ly2JxWzCATdc1JNFAGlC36QGJe-0-4f60eca1e6da99abb8805b1d19d6b02c)
对于导模,仅在芯层具有振荡解,而在共边的四个相邻区域具有指数衰减形式,在对角的四个区域可视为零。据此,可以将方程(5.2-9)的解分区域表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0013.jpg?sign=1738862047-8NcAJvvWlKLASNtqTSHAtd39rQl7DLjD-0-d0fdf1867864bab5d9e16d197f161c94)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0014.jpg?sign=1738862047-1ipi67c61Hv3n5rggUetFHFVITnCbp9j-0-61210fe97ff8dad90cab1a13a17fc930)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0015.jpg?sign=1738862047-WqrZ6zWPOvxCZqn8ZZ5LCjOVekEDnVQO-0-84932ac35a9a8c274e44b38cf6a1322d)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0016.jpg?sign=1738862047-N3PcBsJrfhdGFIWnjUDv1OVhfEGtC5Ds-0-1921517e167e2b9ab581200cfe82b9f4)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0017.jpg?sign=1738862047-E6paOwVu2xenYpzmd8EErBkR63w3oLlB-0-219627b991c77bd4681e43237fe85366)
式中,C1、C2、C3、C4、C5为振幅因子;φ1、φ2为待定的初相位常数;kx、ky为传播常数的x、y分量;α2、α3、α4、α5为光场在波导芯层共边的相邻区域与边界垂直方向上的衰减常数。波导芯层沿x、y方向的尺度分别为2a、2b。将式(5.2-10a)至式(5.2-10e)代入式(5.2-9)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0018.jpg?sign=1738862047-xzFZfXSNMHyFu1TUVYVNrhMLxAgmM11I-0-b1acd472d87498f5e095f130d4a08031)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0179_0019.jpg?sign=1738862047-Nq9zLIXmvMM7vxGLU3ybhk2QihmrThjD-0-39e23c4d8ca2e6cb42199c537cabe0d3)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0001.jpg?sign=1738862047-o8SLQ5JI8ipsfofPFWWi8sbHJW2rMwoT-0-24d4306d6631f8858355793ae154f742)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0002.jpg?sign=1738862047-JcpTiOEZkyMrInjRgRQcHt0DF4UEj69Z-0-9ec30d3b3236e5d1dda43f8c456605b1)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0003.jpg?sign=1738862047-KQe2tJWHNEM9eSiLwsXTJmxCs8yB06s7-0-3e3131e7dd9251ff102ad0a53291f111)
由式(5.2-11a)分别减去式(5.2-11b)、式(5.2-11c)、式(5.2-11d)、式(5.2-11e),并整理得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0004.jpg?sign=1738862047-ufAc2nLPvEDTUCPNeCwWr1LdQF0sSZCf-0-7e6c60f2010985eb396efc1d6cfab053)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0005.jpg?sign=1738862047-OOvR2SF4IiGed652jkaBqTx4rXlC8tFz-0-0845d09d12147b63286edc291cdfd819)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0006.jpg?sign=1738862047-4gM5xAhm2TmpPlMAAEaB6vAYKW46YVaD-0-924c5c13cc8b0a6bcec011b4826d391f)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0007.jpg?sign=1738862047-sSQGjVGJhsBm8UqvGdvhKcjKfWs8VkOb-0-10dc03d7fab4d5c7cc845d0da147c0ef)
进一步利用边界条件,可以得到模的本征方程。
1)在x=±a处,Hy和Ez连续
利用Hy和Ez在x=a处的连续性条件,将式(5.2-10a)、式(5.2-10d)代入式(5.2-7)得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0009.jpg?sign=1738862047-gLqurIQ0D2ajGtDQ8CKA1WMWn7yuEmdZ-0-9ed7813f0b7b845246fb1bc5d7e05ffc)
将式(5.2-10a)、式(5.2-10d)代入式(5.2-4b)得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0010.jpg?sign=1738862047-lLMDd7qWrtXO3a1FR0DuYWs8qlqkbad5-0-4dc85982b8e350833aba7631ea630726)
式(5.2-13)与式(5.2-14)相除可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0011.jpg?sign=1738862047-RopdVHZa2ZURjBRGkRGUcqyryeOY6FPp-0-149670398cce52783d484bcb1cc7846a)
利用
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0012.jpg?sign=1738862047-nAPePCcXZUnLyx2cZKtucyCnc1IHsHob-0-0f98ad6ca8657b3e998793be48bc0908)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0013.jpg?sign=1738862047-m37gZVIOWwbtGGCDWKEZ5u1gpuwMjgqY-0-c2fba5de6d37af6b404c08dbaa43381d)
将式(5.2-16)代入式(5.2-15)得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0014.jpg?sign=1738862047-TF665X2T0UQJfBm07Vb5powUgUFJyi7y-0-58ed9b1ce6df9360c4a9926565694355)
同样方法,在x=-a处,利用Hy和Ez的边界条件可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0015.jpg?sign=1738862047-X2lqYqEpy8BIX8VB9axUibwxySyNYkQx-0-c0eb1aaeba478bf0c537a1d4c11dbc55)
从式(5.2-17)、式(5.2-18)中消去φ1可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0016.jpg?sign=1738862047-AO3Da0XLSpY1LbJaPWspURacGQDABH5o-0-8645bf335cc1e53e8d6db0f843b8e82d)
一般地,因此近似有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0018.jpg?sign=1738862047-7VNgpG6lpK4e7nZ5QUHL15K00motzyru-0-6be93d36bae9a889b624715fc225d87e)
2)在y=±b处,Ex和H z连续
在y=b处,Ex和H z连续,由式(5.2-10b)和式(5.2-10c)可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0019.jpg?sign=1738862047-GPgIFJD9cIudEWl0meEjO4prLGNCTSLc-0-2a7201fd594d6379f1ffdf80ebbd8ad2)
将式(5.2-10b)、式(5.2-10c)代入式(5.2-4c)得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0020.jpg?sign=1738862047-BKI6dtsPGIcX4QNhMspPTK4S8vuqACtl-0-9f0a711052747708c25b6e859e64c262)
式(5.2-22)与式(5.2-21)相除可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0180_0021.jpg?sign=1738862047-3kNomor0KX1ghSAuRXxrgoo2dKPm8nFU-0-a30a2e200819f3f89c988de39658336c)
同样方法,在y=-b处利用场的切向连续条件可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0001.jpg?sign=1738862047-5XtsKkMERBo8f69yPQ0rxV71KHfQ98YO-0-099ea7c22b453252add3ca52d5e15bfa)
从式(5.2-23)、式(5.2-24)中消去φ2可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0002.jpg?sign=1738862047-DKhAjVFFJgKsHt0590ftqkdOgRpDRLox-0-2216eaeba38c69055f5fc99873d76c85)
前面指出,模的下标m、n分别表示光场沿x、y方向变化的极大值数目。为了将
模本征方程中的下标p、q换成m、n表示,利用三角函数关系
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0005.jpg?sign=1738862047-BlEJy3iTE7oDIM1zUEEIlv7TPU67Dtbg-0-bf2130bc7c8cbbb45700146b677a444b)
可以将模本征方程写成
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0007.jpg?sign=1738862047-LU96FWlOvj3stLG50My6nZkFpzsFkPG4-0-42a7e74fffee6a942dab43c0c3efc2fb)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0008.jpg?sign=1738862047-HScDDJC8VIqsTrTSGxhOVXDaCpmv73dL-0-35ec99df180017fbab3cfa4e5ec518ed)
2.模式分析
对于模,已知主要电磁场分量是Ey和Hz。可以用类似于求解
模的方法来分析
模。根据麦克斯韦方程中电场与磁场的对称关系,只需要将E换成H,将μ0换成-ε即可。由此写出麦克斯韦方程的分量形式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0013.jpg?sign=1738862047-1oG3y6MRom4p60gGyrblHQVJu0RTxcix-0-123e47387c1a2517c10193288c882864)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0014.jpg?sign=1738862047-cmbKCFx3c2c9oBI22yiM7oakYgmh9QMm-0-dea7520e60409aa3122c818ad108bbcf)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0015.jpg?sign=1738862047-1iQON7dJjbgUEFsU5ukYGt0ETZwRv5kT-0-00ef2226423a13e39e3b3f539eef47bc)
及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0016.jpg?sign=1738862047-Jlr6nEgknxoIaffsKtXMPkpBsVyDLeCg-0-4e0bedb728830590abe62c5cab4e9d61)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0017.jpg?sign=1738862047-dtvVxkWriECeWxaCV4IYEoiFKk9U9bBK-0-1ee9f1d1e58a29d1a7db74e04ec71e3a)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0018.jpg?sign=1738862047-TvPdvnkjKKwbtgz6q2uxyMPTRnZS2n42-0-60fe785f241253d63a458248788eaf06)
由式(5.2-28a)至式(5.2-28c)可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0019.jpg?sign=1738862047-wHlBUvARKRRClGqT06KEoOs2m4B3yADg-0-d7cf367b130111e07d53d344f061126f)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0020.jpg?sign=1738862047-jUXgiJUKkQTocsQ9aUzC4k2oCvTpkAgU-0-0230992ec0cc5ad90e6764580271e8e5)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0021.jpg?sign=1738862047-9CENGcxa2nnktlIff7yT4RgVXz7STadt-0-726aba47df18f47fd27a8f6e9009ac88)
另外,根据
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0022.jpg?sign=1738862047-nG7zTO7cNBbrwnH4rNr6bGi4lPa863re-0-a42496f2e69982d874386cd388fb91a9)
表示成分量形式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0181_0023.jpg?sign=1738862047-DJp4aga7IasBPszK1J0RZgXvssLqQM1H-0-10b403d728bf9518f192cb1d21792ffb)
由上式可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0001.jpg?sign=1738862047-PdNeApjz7wzlIsJ5kL9VaK1BAe9CZZfg-0-704d0cbe3324d7a20391b3685e3e518e)
将式(5.2-30b)、式(5.2-30c)及式(5.2-33)代入式(5.2-29a),经过整理得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0002.jpg?sign=1738862047-OVt4NZu2fpUBwyk953SLyF076GcdwlsV-0-ab0edfe13e9c00b37942521db3ef96d1)
同理,将方程(5.2-34)的解分区域表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0003.jpg?sign=1738862047-W8RgtjePKI249GpWnXnlWLOLhKjImPik-0-bf072195a75771aaa0899c790dc4a1cd)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0004.jpg?sign=1738862047-SK9VW27W0sWL4LBeF0zhEWUBYxM3P9ny-0-85e24397b43e5c1d99741f8a4e16499b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0005.jpg?sign=1738862047-xg3lGxibF2u0So3CBe0xAceE6ZnA12ZH-0-2779e1ff12ce6f9efcf7cecf54bddf7d)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0006.jpg?sign=1738862047-l8KTd4kMOFllzaAFQhHO9zIkd72VUdwa-0-dca152e6052b3c3d338d331396a80df5)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0007.jpg?sign=1738862047-MNtkLfPFbunwSO1GYk7snt9MzR0zfit5-0-f9802f9eda83d1ceec5b553aee5f59a9)
利用边界条件,可以得到模的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0009.jpg?sign=1738862047-vAMYj3v8aCDIqOBLoVqwqLpYU0zyMYc8-0-6edafbb188552aef1c45128c01f62b1d)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0010.jpg?sign=1738862047-KkO769RpVv6hAE7YTT3fmiiCoY3kiZpX-0-0eaec9abe56bd37da22fbb8de96b0aeb)
5.2.2 有效折射率法
与前面介绍的马卡提里方法类似,有效折射率法也假定介质波导中传播的模式远离截止条件。这个条件使得矩形波导中的模式可以分成两种类型,即模。利用5.1节中平板波导的结果,可以把矩形波导分解为图5.2-2所示的两个一维平板波导的组合。在图5.2-2中,图(a)所示的平板介质波导薄膜层的折射率与矩形介质波导芯层的折射率相同,均为n1;图(b)所示的平板介质波导薄膜层的折射率为图(a)所示的波导沿y方向的有效折射率N1。N1的值由下式得出
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0012.jpg?sign=1738862047-zpdyG5SKW37HSlXdIRFWbvnaOwuQ6jeb-0-f217416e74e8dd1700828f81711de19c)
下面通过具体的模式分析,导出各类模式的本征方程,并求出模式的本征值。
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0182_0013.jpg?sign=1738862047-ROUKdzZpi6U9xZPRC0wYUa7LafPIsL9o-0-eb6e8883bdee0ae86a0863d99305366b)
图5.2-2 有效折射率法分解示意图
1.E xm n模式分析
对于模,已知主要电磁场分量是Ex和Ey。从图5.2-2可以看出,这种场相当于图(a)所示的平板波导中的TE波;而对图(b)所示的平板波导而言,这种场相当于TM波。上述分析可得两平板波导的模式本征方程分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0001.jpg?sign=1738862047-FUjW4vRQCCbEJZGQa3eFSmbNyuYHmb8S-0-0371ff53abb9cc1650e0064cdfd662fd)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0002.jpg?sign=1738862047-VY3I2BkQKUXSYEEaThI3c7OzaTCHbeoS-0-3c977bf532deaad7d55eeae8082c704c)
式中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0003.jpg?sign=1738862047-w7Ehr7AYWealtOV641ZToxQ3eKj8am3Y-0-df314dc87158a6f5aae076ed7db50aa3)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0004.jpg?sign=1738862047-qWiyzCCcufr0F5La8QAiDS3rX6WCuRJx-0-ce6ddd38d9b61c8bcf9f2eaaf2b0a4aa)
注意在图5.2-2中,图(a)及图(b)中两个一维平板波导不是等价的。图(a)所示的平板波导是图(b)所示的平板波导有效折射率的提供者。N1一旦确定,图(b)所示的平板波导的传播常数就是矩形介质波导的传播常数。由式(5.2-38b),可以求出矩形介质波导的传播常数为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0005.jpg?sign=1738862047-ZCQgUhzTMwVqRD5OYTPwb20Mc0QqzepO-0-98d7b4922efead9420fe25e25b179154)
把式(5.2-37)代入式(5.2-40),可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0006.jpg?sign=1738862047-CdRDqhQnpFsBqTR6DbWCVL7jorbCPT8I-0-3125417d195ca199201fc7d1cb7010d7)
上式即矩形介质波导的传播常数。
2.模式分析
对于模,已知主要的电磁场分量是Ey和Hz。从图5.2-2可以看出,这种场相当于图(a)所示的平板波导中的TM波;而对图(b)所示的平板波导,这种场相当于TE波。与前面的分析类似,可得两平板波导的模式本征方程分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0009.jpg?sign=1738862047-blcP0rmu1qrq0iEK8UlicZr4wBPU940J-0-e066716c35d78fb2694f633db37abf07)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0010.jpg?sign=1738862047-7rsRhJcirSnmD3XTyT7AYxAL6bFro575-0-44d727503a80e237a81b1e7963d87e18)
有效折射率法是一种简便、实用且较精确的方法,这种方法在矩形介质波导中得到广泛的应用。