![系统建模与控制导论](https://wfqqreader-1252317822.image.myqcloud.com/cover/696/50417696/b_50417696.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
2.1 拉普拉斯变换的性质
接下来,我们回顾拉普拉斯变换的一些可以简化计算的性质。第一个性质是对拉普拉斯变量s的微分。
性质1
设
L{f(t)}=F(s)对于Re{s}>σ
那么
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/51_07.jpg?sign=1739280497-weaqWKSxv4hE8WW3zCWq36q9AMcdEW9Q-0-72f7778f4826428d4f5ed45bca00711a)
证明
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/51_08.jpg?sign=1739280497-M0gegwTCewpCQeK7cbC8rqhwKo1GydpI-0-c2780ef38648b0eb0947dd1edd6c9511)
所以
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/51_09.jpg?sign=1739280497-9faaY5AUREQE31uG7gSpO3ZO2elzPaMn-0-037a9e45c033bc9775a842f6f0921859)
作为这个性质的一个例子,我们展示如何获得任意n的tn/n!的拉普拉斯变换。
例5
在前面的例子中已有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_02.jpg?sign=1739280497-oZFkmETmUK0uZz0VBpE1WgLpZoNbH2MG-0-4f76df5955bbd797f4f3169982e1719d)
因此
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_03.jpg?sign=1739280497-csOXyFTWI29lje1QBBhu5S92JzF0Audb-0-99d3aec49e57d9cabc28998cc9d5b596)
我们对
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_04.jpg?sign=1739280497-rwAxy2py3FT3mfgcIdWtQtSqka2DXXDe-0-79ba7eb468458e6cef4ea09c5a9fcc38)
两边的s进行微分,有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_05.jpg?sign=1739280497-MH0lYqZM51plif6EvmB7d7eBSSfFqn2l-0-78a0aa43cba905793f2e1a2a948ba580)
或者
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_06.jpg?sign=1739280497-Lu5eyK0vtvecd7M6bCfXG8lutTslb5j6-0-8a8bfe8bf34e08be05e8470a062757e0)
类似地,对于任意的n=0,1,2,…,都有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_07.jpg?sign=1739280497-bkraBR09wLgGSPSd6YNBMUnL2CuUVmrm-0-eb541d2410d44c09f2c7dd627d934ff6)
例6
我们在之前的例子中可知
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_09.jpg?sign=1739280497-srUeS6z5gApj8BgXXjQ3ZMvqfdJSAGPF-0-82f81df91eaf6298bcc686090be3d225)
根据式(2.8)我们可以得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/52_10.jpg?sign=1739280497-Wm79z0xRgusZvAu1wnNiTLH9qSoPSkIX-0-8c2b06ded94433de3cb339db2ffaeb05)
性质2 L{eαtf(t)}=F(s-α)
令
L{f(t)}=F(s)对于Re{s}>σ
则
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_01.jpg?sign=1739280497-FcWrNbQ7eDrN0HyuvMU5XNmj3tCotPnP-0-7714fc5a5011fe5a1b4fcf0dade2075e)
证明
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_02.jpg?sign=1739280497-L6xS3cBcDDN7YEIlmnfapi4Eo5N1hl4i-0-88b5747114c324205dbeaff123130cbe)
例7 f(t)=cos(ωt)
已知
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_03.jpg?sign=1739280497-zWgyeOIYFmbcYs3a9IHj4SuONLzvxOnd-0-c09c421bba7e2e852294ad07f018e29f)
可得
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_04.jpg?sign=1739280497-mDgEpJMbGNKPSEKQlG1eE5sLP1awKDgP-0-6e362ce5b70d306fb60a00e8bb2a0967)
性质3
令
L{f(t)}=F(s)对于Re{s}>σ
则
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_06.jpg?sign=1739280497-k93W3h8kkul4AeLl4ljGpkjBZP09Eaxy-0-a7755110ed406d5ae7b83cec5d878753)
证明 根据拉普拉斯变换的定义可得
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_07.jpg?sign=1739280497-ltyMYDsRf0kRRwNQcPgc6xEoZ4LRMYhn-0-c9732c1bd0246d5527d5f01a6c0bb4cb)
接下来用分部积分法,令
u=e-st,dv=f′(t)dt
并且
du=-se-stdt,v=f(t)
于是
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/53_08.jpg?sign=1739280497-bbLHgt3OSSr670hvnJCJ4hAIjEg9g7ti-0-6bc111af381811986426b87257860837)
对于Re{s}>σ,存在f(t)的拉普拉斯变换,使对于Re{s}>σ成立[1]。因此最后一个方程变为
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_01.jpg?sign=1739280497-tkEVuN1DoWWkf3NxLU8SoHlHtBD0rlzI-0-10cbde2a30b10f01b4469dee6a819f82)
例8 f(t)=cos(ωt)
f(t)=cos(ωt)和它的导数分别为
f(t)=cos(ωt)
f′(t)=-ωsin(ωt)
对于Re{s}>0,f(t)和f′(t)的拉普拉斯变换都存在。于是利用
L{f′(t)}=sL{f(t)}- f(0)
我们可以得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_02.jpg?sign=1739280497-PJtzhrdSIS7zfh6rWdfg5W7mqR6EqcsX-0-82fba079545d064857cdfaab31809c9b)
或者,经过整理可以得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_03.jpg?sign=1739280497-StWB8J1FhnRwTmsQfHfqytnFVMoH2TBA-0-d131985b0e64206d75ded63999b3ae83)
例9 解微分方程 考虑一阶微分方程
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_04.jpg?sign=1739280497-N601jUnBLUIxAhlLEyjcjueSTBpGyzzl-0-649152ff8b37333cdef6fc4b9fc08496)
其中,输入us是阶跃输入,并且
X(s)≜L{x(t)}
我们有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_05.jpg?sign=1739280497-4X1eg0c2jOxijxty5qXxQkvJ3vfidLdg-0-cfab2af3a5c03e0843d4e7ecbf65823e)
并且
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_06.jpg?sign=1739280497-Xzb00hPr59Z5EKhZ4KXITjh0Xw0ox2QO-0-c9ab41086e1ef0bff22fdbbc3a334cf6)
对微分方程两边同时做拉普拉斯变换,可得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_07.jpg?sign=1739280497-rW4Q1t8V4Os2rkYQIRIuj9V5PNqBo4K9-0-f242c591ed4951c6a72c8b2d2cf259f8)
继而
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_08.jpg?sign=1739280497-FDspYeE9QzYh0tJlQg6m3hcRFp1WS7Hr-0-4849fab4a7d03f94b54da2bafb1d2bc8)
将X(s)提到公式左侧,可以得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_09.jpg?sign=1739280497-M3pLCVcBuwoXDVPOMPMgvuJuGfLWVFvA-0-7914d2cbaf5e94edfe31e0157291edd6)
化简得
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/54_10.jpg?sign=1739280497-yjK7EmYo2xBM1maBqc31c1rWsTXn2fJk-0-dd8a8c80150c6fad7543a059a72c31d5)
为了解出x(t),我们需要计算
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/55_01.jpg?sign=1739280497-flVJNJnmnCl6fWxLetNRDH9giwQUzjV9-0-b2775e7e76cf65695a2dc82696179548)
第二个方程后面是部分分式展开,这涉及下一节的内容。