![高等数学(上册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/659/45564659/b_45564659.jpg)
第二节 极限的概念
一、数列的极限
首先给出数列的定义.
定义1 如果按照某一法则,对每个n∈N+,对应着一个确定的实数xn,这些实数xn按照下标n从小到大排列得到的一个序列
x1,x2,x3,…,xn,…
就叫作数列,简记为数列{xn}.
数列中的每一个数叫作数列的项,第n项xn叫作数列的一般项.例如:
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P15_26884.jpg?sign=1739543321-c2IVWu6ZwoiUtvjX2o21eWkbbD3l4bdP-0-35fd244bac3b0114f0b270cd907db691)
都是数列的例子,它们的一般项分别为
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P15_22292.jpg?sign=1739543321-jQl9a3xnSjkDuAusfHxNJLnq4klQNM9a-0-067e9c1dc2e5a0c9048c6fe55fcdf09a)
注 数列{xn}可看作自变量为正整数n的函数xn=f(n),n∈N+.当自变量n依次取1,2,3,…一切正整数时,对应的函数值就排列成数列{xn}.
对一个数列,我们关心的是当n无限增大时,对应的xn是否能无限接近于某个确定的数值?如果能够的话,这个数值等于多少?就数列来说,当n无限增大时,
的值无限接近于1,意味着
的值无限地变小,而且要它多小就可以有多小,只要n足够大.例如,若要
只要n>99即可,即从第100项起都能使不等式
成立;若要使
只要n>999即可,如此等等.这样的数1,叫作数列
时的极限.
一般地,有如下的数列极限的定义.
定义2 设{xn}为一数列,如果存在常数a,对于任意给定的正数ε(无论它多么小),总存在正整数N,使得当n>N时,不等式
| xn-a|<ε
都成立,那么就称常数a是数列{xn}的极限,或者称数列{xn}收敛于a,记为
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P16_22306.jpg?sign=1739543321-M9QO8dBFBMhM1dFm0lOcvVUxN9BDtklP-0-9b55ef502d976e960e4c49022b02e103)
或
xn→a (n→∞).
根据这个定义,数列{xn}是否以a为极限,取决于对于任给的ε>0,是否存在相应的正整数N.
例1 根据极限定义证明
证 对于任给的ε>0,要使
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P16_19027.jpg?sign=1739543321-INbtmB7QtVJbzrMI1PBlSDqOHt0Wvvu1-0-f068274eb6f051f00e1b27452d27fba0)
只要所以,对任给的ε>0,取
则当n>N时就有
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P16_19033.jpg?sign=1739543321-r7Pysb0lkrtFQHUfic8nNJnczLxothY3-0-f8ce58c8421a32834f28efaf130d0b80)
即
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P16_19032.jpg?sign=1739543321-qARG4uJAjbQPtt0WDqYrKh4f9ie2wijL-0-da775e7ba5d4aee7d26d479820abfa04)
例2 根据极限定义证明常值数列c,c,c,…收敛,且
证 任给ε>0,对所有的n,均有
| c-c|=0<ε,
因此任意正整数都可作为N,故
例3 设| q|<1,证明等比数列1,q,q2,…,qn-1,…的极限是0.
证 对于任给的ε>0(设ε<1),要使
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P16_22320.jpg?sign=1739543321-5HA30TxarB2yZRtzqr1Gwdc2dEyOP9mU-0-c0a3897bea91f376ca885e05f2cbae55)
只要(n-1)ln|q|<lnε.因|q|<1,ln|q|<0,故
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P17_19050.jpg?sign=1739543321-afa122AtkF1Irv0PldsucUo8RxysLTJY-0-e5e15462fa539e94023ba0a4b10b969f)
取则当n>N时,就有| qn-1-0|<ε,
即
二、函数的极限
1.自变量趋于有限值时函数的极限
现在考察当自变量x无限接近于某一点x0时函数f(x)的变化趋势.如果在x→x0的过程中,对应的函数值f(x)无限接近于确定的数值A,那么就说A是函数f(x)当x→x0时的极限.当然,这里我们首先假定函数f(x)在点x0的某个去心邻域内是有定义的.
下面我们给出函数极限的定义:
定义3 设函数f(x)在点x0的某一去心邻域内有定义.如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ,使得对于满足不等式0<| x-x0|<δ的一切x,总有| f(x)-A|<ε,则称常数A为函数f(x)当x→x0时的极限.记作
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P17_26890.jpg?sign=1739543321-6W2OXHKQtpbkcB4FV6domNqe1QaXpGR5-0-03942ea642e8636f21f5f00350d81572)
在这个定义中,不等式0<| x-x0|<δ体现了x无限接近于x0,但x≠x0,不等式| f(x)-A|<ε体现了f(x)无限接近于A.如图1—6所示,其几何意义是对于任给的正数ε,作两条直线y=A+ε和y=A-ε,则总存在x0的一个去心邻域U°(x0,δ),使得在此邻域内函数y=f(x)的图像落在这两条直线之间的阴影带形区域.
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P17_485.jpg?sign=1739543321-GlnY3Ktj04MCtexGN4dWs6viJ3TwKbIP-0-92ab6b8f2b01129e6c756c94a4f45988)
例4 证明
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P17_22325.jpg?sign=1739543321-8FVPORtSzMcEdIKV35eOEu0iRib4aD5q-0-6e803288c95eb476a2f17b277575066f)
证 这里| f(x)-A|=| x-x0|,因此对任给的ε>0,总可取δ=ε,当0<| x-x0|<δ=ε时,能使不等式| f(x)-A|=| x-x0|<ε成立.所以
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P17_19042.jpg?sign=1739543321-owEZTNmsSP1TgxRqsf369nTvDyM34pWr-0-09e23e82d6b07d9d50622bf3e46eccff)
例5 证明
证 因为
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P17_19046.jpg?sign=1739543321-4EHZ2EVxBer2vS6cKBdGCkhMTDi5iS12-0-69812258e92577a01026dd95e5d5a5d4)
故对任给的ε>0,要使| f(x)-A|<ε,只需取δ=ε,当0<| x-x0|<δ时,就有
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P17_19048.jpg?sign=1739543321-dXgcILjIA7miIQQ6Gjxeo1Jojp4Ckb7i-0-a766769509ab68cbaf812836fd85682c)
定义4 设函数f(x)在点x0的左邻域(或右邻域)内有定义,在x0处可以没有定义.如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ,使得对于满足不等式x0-δ<x<x0(或x0<x<x0+δ)的一切x,总有| f(x)-A|<ε,则称常数A为函数f(x)当x趋于x0时的左(或右)极限.记作
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P18_19052.jpg?sign=1739543321-XcDpt0ni0AbpFhEdQgjTFvTeCX8VQN7U-0-3392267b409c291066bb41a4d7aaa9be)
或
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P18_19054.jpg?sign=1739543321-IwyrGdT9wXcgubNJKvsJR6gEsdg7Iw4x-0-00f4a7d5e46728c4bd98853500a7e428)
左极限和右极限统称为单侧极限.
定理的充分必要条件是
例6 函数
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P18_19059.jpg?sign=1739543321-6V0uyywfFfE432uvvZ5HxjNZUlkZmmOv-0-1cbcb1aed4bf63722b7b6818d2b27e51)
当x→0时,f(x)的极限不存在.
证 当x→0时,f(x)的左极限
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P18_19061.jpg?sign=1739543321-XEbEgeJUd0bbRJjw67pROreG90jBoviB-0-7e17489bef496999e5c22b8fea41f4b8)
而当x→0时,f(x)的右极限
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P18_19063.jpg?sign=1739543321-zlMCB2uRwDpxbx9WbcsSYb1HBAESgXIe-0-b83ee6823d9e47ea7b29c7c6c472a1bd)
因为左极限和右极限存在但不相等,所以不存在.如图1—7所示.
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P18_525.jpg?sign=1739543321-MA2sCFFWusYozBGfwOKuZvV3HaW7agq6-0-fd0bc5bec3a442ca96aa07b098e0ab53)
2.自变量趋于无穷大时函数的极限
如果在x→∞的过程中,对应的函数值f(x)无限接近于确定的数值A,那么A叫作函数f(x)当x→∞时的极限.精确地说,就是
定义5 设函数f(x)当|x|大于某一正数时有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数X,使得对于满足不等式| x|>X的一切x,总有
| f(x)-A|<ε,
则称常数A为函数f(x)当x→∞时的极限.记作
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P18_22337.jpg?sign=1739543321-ButhS7dulT5fhWaSxoyQbtq2J3b4AYrF-0-ece31bc450a3f4b035b55f1bf5aef166)
定义6 设函数f(x)当x大于某一正数时有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数X,使得对于满足不等式x>X的一切x,总有
| f(x)-A|<ε,
则称常数A为函数f(x)当x→+∞时的极限.记作
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P18_22341.jpg?sign=1739543321-wlYuO0zfMMFnDQQN9EvymtKBr1Ug8mfG-0-ab2fc559f559399ef37a1a5a1ce5ba22)
定义7 设函数f(x)当x小于某一个数时有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数X,使得对于满足不等式x<-X的一切x,总有
| f(x)-A|<ε,
那么常数A就叫作函数f(x)当x→-∞时的极限.记作
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P18_22343.jpg?sign=1739543321-HF3tfYvWeii5gNbrGyFPrw6GGrxaFF9p-0-927888c1b4d4819eebce7cb880475ab0)
例7 证明
证 对任意ε>0,要证存在X>0,当| x|>X时,不等式
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P19_19088.jpg?sign=1739543321-8VEoDolLwPrKAEammqW65Ih98qgzsI0S-0-d9791a7b93a466990ec0a6251aab94fe)
都成立,即如果取
,那么当| x|>X时,不等式
成立,这就证明了
![](https://epubservercos.yuewen.com/C25069/24653548809151206/epubprivate/OEBPS/Images/P19_19068.jpg?sign=1739543321-HTbH3toggdEMy40Ts6UhyENBHqHoKkON-0-21cc07fa838572ce77230320b3acb4aa)
习题1—2
1.观察如下数列{xn}一般项xn的变化趋势,写出它们的极限.
2.根据数列极限的定义证明:
3.设数列{xn}有界,又,证明:
4.根据函数极限的定义证明:
5.讨论函数当x→0时的极限.
6.设求