![沼气液化制取生物质LNG技术](https://wfqqreader-1252317822.image.myqcloud.com/cover/772/41807772/b_41807772.jpg)
2.2.1 相平衡计算方程
状态方程是计算混合气体相平衡的有效方法。相平衡计算的目的是确定混合气体处于气、液平衡时压力、温度及气、液相组成之间的关系,本章利用SRK、PR方程,采用C语言编程,计算液化系统中的压缩因子、闪蒸气体的气液相平衡比,对结果采用误差分析法确定计算的正确性。
(1)逸度和逸度系数
逸度是压力、温度变化引起的Gibbs能的变化,即
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P053.jpg?sign=1738843735-gcO6ES8ovMsk0carG7ZUubnETjax0CYI-0-aeb72142953dffb351560a1e6b9ea038)
恒温下的理想气体
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P054.jpg?sign=1738843735-OOizfjQeHHkVOu6M53aLBHiEtnCWgyC6-0-1163216049e8fae4f93188a9c867f5d5)
在恒温条件下,1mol纯气体的化学位可表示为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P061.jpg?sign=1738843735-wclUdayQBAHv0PCJGTPw91GcxgJHGDfU-0-9445f41fe3f8c70dcd3f18ce291ff6e0)
式中,μ0为标准化学位。
理想气体,则式(2-20)可写成:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P060.jpg?sign=1738843735-0pz22Ih9zh8s7dEbVCMKja2p8v45201w-0-e3adbe86abc097d7d906c58c66467d7a)
式(2-19)不适合真实气体。G.N.Lewis提出以逸度f代替压力,用在实际气体中:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P062.jpg?sign=1738843735-XTxxKsCFm6lO2VG2vtvOMR4Kj0gyJh7S-0-a21290e6ccb3a2e8c8985ed514fd6720)
当压力很低时,逸度等于压力。因此
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P065.jpg?sign=1738843735-1qlZAEW4DIW3k0kHJJK7vVUsvSCrDEZh-0-eb093f6382723108f215504656f4f17b)
对于真实气体
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P067.jpg?sign=1738843735-J1jvZKqV7Vokw4ucX5anfWsua1xkHWYh-0-eeb12cab3d74a532b9dd39d00b7df05b)
式中,ϕ为逸度系数,是压力p的函数。由式(2-23)可知,理想气体的逸度等于它的压力,即ϕ=1。而真实气体,ϕ可大于1,也可小于1,将式(2-22)和式(2-24)合并后可得:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P059.jpg?sign=1738843735-Fz7LoUhNy7sb6Rp0vEle7knIl5NnoaGQ-0-7112f46bbc5662f214758117c10857bd)
积分得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P064.jpg?sign=1738843735-Jd6NUAUx2SHea5y8NLqHuRft2r10ux3z-0-8a67b44a72fedd43fe707e363cf743f0)
将代入式(2-26),并改写为:p (2-27)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P063.jpg?sign=1738843735-kDYdIFSIOSHKYKHCaip49SOkGkmxO9DT-0-af1da66e0475435969e12a80bbde0454)
当p0→0时,p0=f0,则上式变成:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P058.jpg?sign=1738843735-jCPYFUs4qH1iWN0ARkCe0tbVqCWRnwn4-0-fec49b03fb005d5c182887dce2cec97b)
将上式改写为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P057.jpg?sign=1738843735-hfyAg33WR3mmBSBxRNSJ2AAIWNoth1Hz-0-4e99950ddd9525f945dcec3fdd29dfb9)
把式(2-28)右边第一项改为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P069.jpg?sign=1738843735-IghPa4HjnwNZ2mMoEpSqhImgSSZM8K5b-0-87ae275ed55e5c1278651f083e63dd57)
将纯气体的PR方程代入式(2-28)得:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P071.jpg?sign=1738843735-cJELcMsRompwlTqyzxg83f7Ojy2XURWL-0-37f95d88f1b3ad1b0b55c477e1da675f)
合并式(2-30)和式(2-32),得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P074.jpg?sign=1738843735-86cnuNyRM5EaW8w0tBHwfZ4rYfHb24x2-0-b807e5f8a53cf6a920bc8589e5c82bd7)
因为pv=ZRT,p0v0=RT,故
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P068.jpg?sign=1738843735-dnQTPNCmN9Y73rm7N6AG83GH14jM1gDh-0-eaa2b559b0ae6fc439c54239c01ad92c)
当时p0→0、v0→∞,,
,式(2-34)可-(2-1) bv0表示为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P072.jpg?sign=1738843735-AVTkGzwxMRsKlczIbSEgidWhw0LIofXx-0-01fb7ff60380c061cb7a11d81a9de06d)
又因为
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P076.jpg?sign=1738843735-dTJAsE7IFs0b9pB6WGAiG3E629nCBEd0-0-3fc307712244e6b62859e57ad41455e7)
代入式(2-35)可得纯气体逸度:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P070.jpg?sign=1738843735-o5vpg8U9kpN8DxIeNuwLLOqpNRhLrOP8-0-442021aad1baa1431097ee0682b22c33)
气体混合物的组分逸度:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P079.jpg?sign=1738843735-Ya0CDo4NlnuezZWZCVt0r42O1yO3bKw1-0-2ca74ff2b841c8c7c1db30c393cc8912)
在温度T、组分yi不变的情况下,由式(2-19)得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P082.jpg?sign=1738843735-iRyXDbOyivAnUHO5IHm3ax3JtRZ6QPTe-0-493782aadc2b144edd92682f9170a94e)
将式(2-38)代入式(2-37),即得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P084.jpg?sign=1738843735-g1fhhIuU541Yj4ssQD3kadRBs1dfhaoE-0-67286fef70bd9b0376fd13914d6e91e6)
将式(2-39)从0到p积分,同时将代入上式,则得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P088.jpg?sign=1738843735-cAwXACKdjlqPGaAodBttQM41iZRFa8IQ-0-3e6c120c3748e5952624207f1c73b075)
上式改写成
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P089.jpg?sign=1738843735-OFSyUQNrPsSU5HMnxQJGilwQ6fJMqvkt-0-32fbadeaba93880dbc93a9a1b04ccc13)
(2)混合气体的PR方程
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P080.jpg?sign=1738843735-GjvxBDhrm1Vv4B1kTjgC7r3sBSNq4e1r-0-e909c8340571c5bdf468760b13c3db86)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P083.jpg?sign=1738843735-HXofq8rzygrQscX86TtOhWPl5OK5uu9z-0-f806afbc6c84bfbfad33f50c90deab7b)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P085.jpg?sign=1738843735-3vXGE10jAprvpGIpZyrSH1gnwYI9N4Et-0-a56b22d72fa8e844a9bf4f8bc815dcbd)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P087.jpg?sign=1738843735-urSkgg4RMDdm9dZoPmD2nZgHLHg6SG71-0-6864e85c3f5e3ad6b3c71981027e08e9)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P077.jpg?sign=1738843735-46AzooBbtNL1U5wLiJj40u2bvywC9C7Y-0-97f49c3a8a3331cde0464ab53c3b12e3)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P078.jpg?sign=1738843735-BXm94WUmx245mbaSowCZvSk7Gs0WKeHA-0-60ea655867b9b4cdb8534571dd18d905)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P081.jpg?sign=1738843735-3uL9snZTTgWkqhBzhL1M0NYN42FSSuGJ-0-60a30cc3292b7ab83cc4f95db65d5e56)
式中 Tc,i——组分i的临界温度,K;
pc,i——组分i的临界压力,Pa;
Zi——组分i的摩尔分数;
Zj——组分j的摩尔分数;
wi——组分i的偏心因子;
Tr,i——组分i的对比温度,K。
PR方程用压缩因子方程:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P093.jpg?sign=1738843735-ZnfgNe19c1qAsR4dK3QR4duqk4IAH52B-0-76a9b39beeb62ea42be924b14d3991ac)
式中,Z=pv/(RT),B=bp/(RT),A=aβp/(RT)2
PR方程计算的逸度系数方程:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P092.jpg?sign=1738843735-2wSqTcnQ5TklIjI6gCqIWY24GOjhjBQs-0-3ca08cb4db7f1347586ae722b6e7db08)
PR计算式中其他的参数同SRK方程,计算液相逸度系数ϕi,l时,Zi为xi,计算气相逸度系数ϕi时,Zi为yi。
对于纯组分、单相混合物,式中只有1个实根,等于该相的压缩因子;在两相区,有3个实根,最大的为气相的压缩因子,最小的为液相压缩因子,中间无意义。
(3)混合气体的SRK方程
对于多种混合气体成分,SRK方程计算式为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P090.jpg?sign=1738843735-gBNKPEEYd7MLkSuOjWE3VPIdtjxrNZ07-0-e8d1ac26ce4c1c136c8596d2471ee559)
式中 p——平衡分离压力,Pa;
T——平衡分离温度,K;
R——摩尔气体常数,R=8.3145J/(mol·K);
Vm——摩尔体积,m3/mol。
a的计算式为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P091.jpg?sign=1738843735-6Rmfq1hY6S46vLAD09l7U8m0AVOUyDsX-0-5e9a5b61110bc774f25b81bd116a521e)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P095.jpg?sign=1738843735-DUEXh5PnfJZfj37gaK13H8mRqnN1ur3z-0-a9336eef1aea0118f1eb6d519f5d6ddb)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P094.jpg?sign=1738843735-3qmf4F95ZyCTES9zmEhfPb7OxYa0z9Mg-0-4ad90a8c74b0dbe80ac55ecfc0fe015c)
式中 Tc,i——组分i的临界温度,K;
pc,i——组分i的临界压力,Pa;
Zi——组分i的摩尔分数;
Zj——组分j的摩尔分数;
wi——组分i的偏心因子;
Tr,i——组分i的对比温度,K;
Kij——二元交互作用系数。
b的计算式为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P098.jpg?sign=1738843735-gdHzC9zgKrHVHd1baloAxW2f0YOB0jOS-0-b46f5bc41ff77addeee592c183cfe49e)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P099.jpg?sign=1738843735-Et5SHT4WZPqrJ42OA4AiP6opfIAMM1jm-0-6b66f935a561f5455b0a83806329225c)
SRK方程的压缩因子方程为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P101.jpg?sign=1738843735-2ChFYV1l5bFmePCqE7UBzHoWYxoTa3TW-0-c7936787862d0814ed11680d367bfb8f)
式中,压缩因子Z=pV/(RT) (2-58)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P096.jpg?sign=1738843735-J2ZpgF71hwwEagrU1OZ4aJt3RFQic7eM-0-24c5e58bd57816ef7001a362297d2d5f)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P103.jpg?sign=1738843735-bD1WHS5K6HUTVKJlFJ7AdEGiSqGqFxto-0-f2468d2961ed3b7bf3ed2322f34d2adc)
SRK的逸度系数方程:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P097.jpg?sign=1738843735-kIiURB0g6ZYINY33pzo3Y9UkuPwoGGEg-0-8ef080d0e07b617ff3702648f9ff5c67)
式中,ϕi是组分逸度系数。
在计算中,已知xi、yi时,计算组分i的气相逸度系数ϕiv时,Zi=yi;计算组分i为5的液相逸度系数ϕil时,Zi=xi。