人工智能算法大全:基于MATLAB
上QQ阅读APP看书,第一时间看更新

前言

机器学习是一种实现人工智能的方法,用于研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,其算法本质上是一种规律发现或问题解决的工具和方法。本书共分6篇,每一篇都对相应类别下常见算法的理论知识进行了详细介绍,并配有应用算法和代码的案例。

第一篇为特征处理算法篇,主要介绍了特征工程领域针对数据研究的几种常用特征处理算法的相关知识,包括ReliefF特征选择算法、Chi-Merge算法,以及特征规约算法。作为迈向机器学习的第一步,本篇详细介绍了特征处理算法的相关思想、流程、优缺点,并通过实例对算法的具体应用进行了总结。

第二篇为分类和聚类算法篇,主要对几种常见的分类和聚类算法进行介绍,包括KNN算法、K-Means算法、高斯混合聚类算法、ISODATA算法和谱聚类算法,详细介绍了这些算法的思想、流程、核心知识和优缺点,并通过实际案例,对分类和聚类相关算法的具体应用进行了详细讲解。

第三篇为神经网络算法篇,神经网络算法是当下较为热门的一个机器学习分支。神经网络有多种分类,一般较为公认的有DNN、CNN、RNN三种。本篇将对与其相关的BP神经网络与径向基神经网络算法、Hopfield神经网络算法以及LSTM长短期记忆网络算法的思想、流程、结构、优缺点进行了详细介绍,并通过实际案例,展示了神经网络算法的具体应用。

第四篇为优化算法篇,优化是数据分析的常用方法,在许多经典问题的求解中,优化算法都起到至关重要的作用。本篇对几种常见优化算法的思想、流程、优缺点以及具体应用进行了介绍,包括网格寻优算法、模拟退火聚类算法和EMD经验模态分解算法等。

第五篇为基于不同数学思想的算法篇,通过对粗糙集算法、基于核的Fisher算法、SVM支持向量机算法和傅里叶级数及变换算法的思想、流程、概念、优缺点以及具体应用进行了详细介绍,帮助读者拓展对于“算法”这一概念的进一步理解。

第六篇为集成算法篇,集成算法的主旨是将弱学习器通过某种形式良好地组织起来,使得这些弱学习器各自的性能相加组合,从而达到强学习器的效果。本篇分别对AdaBoost、Bagging、Stacking和Gradient Boosting四种集成算法的思想、流程、优缺点以及具体应用进行了详细介绍,从数据、弱学习器、集成方法三个角度出发进行深层次阐述。通过本篇的学习,读者可以对集成算法形成较为全面的认识。

本书主要为有志于从事机器学习领域相关工作的读者建立起一个通用性的流程和框架,并对流程的关键环节适当展开,给出一些介绍和程序案例。读者可以从本书的学习中了解机器学习到底是什么,并在今后结合自身的工作,进一步丰富和拓展这个流程和框架,从而最终成为一个机器学习算法的高级开发和应用者。

读者定位和阅读方法

本书分别从学习方式和理论知识两个方面来对机器学习的算法进行分类介绍。在介绍每个算法时,都对其原理、思想、流程、优缺点等理论知识进行了详细介绍,然后以具体的实例分析和代码展示来对该算法的应用进行完整解说。通过阅读本书,读者可以对机器学习形成一个系统、全面、完整的认识,并且在今后的研究工作中逐步拓展,最终形成自己的体系。本书适用的读者对象:金融机构的量化投资经理、科研工作者、互联网企业的算法工程师、大中专院校相关专业师生,以及其他对机器学习技术感兴趣的读者。

配套资源

编者在金融业从业多年,有着丰富的业界积累。读者可以扫描封底二维码(IT有得聊),进入读者俱乐部,其中有本书相关的视频授课资源,以及丰富的机器学习算法资源和其他研究资源。

由于编者水平有限,书中错误和疏漏之处在所难免。在此,诚恳地期待广大读者批评指正。在技术之路上如能与大家互勉共进,也将倍感荣幸。

编 者