
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
4.2 基础MLP网络
本节使用回归分析和分类任务两个机器学习的典型应用场景对基础MLP网络进行介绍。
4.2.1 回归分析
回归分析是确定两种或两种以上变量相互依赖的定量关系的统计分析方法,本节使用TensorFlow 2.0对回归分析进行介绍。
(1)导入数据集,代码如下。

(2)代码的运行结果如下。

(3)在导入数据正确的前提下,构建并配置回归分析模型,代码如下。


(4)代码的运行结果如下。

(5)结果显示模型输出正确。下面对回归分析模型进行训练,本例中的训练次数为50次,代码如下。


(6)代码的运行结果如下。

(7)对模型进行多次训练后,集中输出训练结果,代码如下。

(8)代码的运行结果如下。

4.2.2 分类任务
分类任务通过训练一个特定的函数来判断输入数据所属的类别。分类任务在现实中的应用非常广泛,如图像鉴定、语音识别等。
(1)导入数据集,代码如下。

(2)得到如下结果则说明导入数据正确。

(3)在导入数据正确的前提下,构建并配置分类任务模型,代码如下。


(4)对模型进行校验,结果如下。

(5)在模型输出正确的前提下,对回归分析模型进行训练,本例中的训练次数为10次,代码如下。


(6)代码的运行结果如下。

(7)对模型进行多次训练后,集中输出训练结果,代码如下。


(8)代码的运行结果如下。

本例使用breast_cancer的数据源进行了简单的图像分类演示,可以发现,随着训练次数的增加,损失率(loss)不断下降,而精确度(accuracy)不断上升。这就是机器学习进行多次训练的意义。