
AerMet100钢
1991年,美国Carpenter公司的Hemphill等人,在保持AF1410超高强度钢良好韧性的基础上,沿用HY180钢和AF1410钢的基本冶金思路,运用统计理论和计算机技术,建立了一个Fe-Co-Ni-Mo-Cr-C合金系性能和元素间相互作用关系的计算机模型,成功地设计了一种新型超高强度钢AerMet100。AerMet100具有拉伸和疲劳强度、韧性和应力腐蚀开裂抗力的最佳配合,在航天、航空、国防工业等许多领域具有广泛的应用前景。
表2-102 Johnson-Cook模型参数

冯雪磊, 武海军, 郭超. Aermet100钢动态压缩剪切数值仿真研究: 第十一届全国冲击动力学学术会议文集[C]. 西安, 2013.
Johnson-Cook模型:

modified Johnson-Cook本构模型:

Yuan Zhanwei, Li Fuguo, Ji Guoliang. A Modified Johnson Cook Constitutive Model for Aermet 100 at Elevated Temperatures [J]. High Temperature Materials and Processes, 2018, 37(2).
表2-103 动态力学特性参数

苏国胜, 刘战强, 万熠,等. 高速切削中切削速度对工件材料力学性能和切屑形态的影响机理[J]. 中国科学: 技术科学, 2012, 42(11):1305-1317.
LIPPARD H E, CAMPBELL C E, DRAVID V P, et al. Microsegregation behavior during solidification and homogenization of AerMet100 steel [J]. Metallurgical and Materials Trans actions B, 1998, 29(1):205-210.
XU Y Q, ZHANG T, BAI Y M. Effect of grinding process parameters on surface layer residual stress [J]. Advanced Materials Research, 2010, 135:154-158.