![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第1部分
八届预赛试题及参考答案
首届全国大学生数学竞赛预赛(2009年非数学类)
试题
一、填空题(本题共4个小题,每题5分,共20分)
(1)计算,其中区域D是由直线x+y=1与两坐标轴所围三角形区域.
(2)设f(x)是连续函数,且满足,则f(x)=________.
(3)曲面平行平面2x+2y-z=0的切平面方程是________.
(4)设函数y=y(x)由方程xef(y)=eyln29确定,其中f具有二阶导数,且f′≠1,则.
二、(5分)求极限,其中n是给定的正整数.
三、(15分)设函数f(x)连续,,且
,A为常数,求g′(x)并讨论g′(x)在x=0处的连续性.
四、(15分)已知平面区域D={(x,y)|0≤x≤π,0≤y≤π},L为D的正向边界,试证:
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0013_0008.jpg?sign=1738833056-AsenPPKVvwgH1a5cLOjir3kRJIaH0WWP-0-ed4d3a1ad28ad9366b0e23a521708e3b)
五、(10分)已知
y1=xex+e2x,y2=xex+e-x,y3=xex+e2x-e-x
是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.
六、(10分)设抛物线y=ax2+bx+2lnc过原点,当0≤x≤1时,y≥0,又已知该抛物线与x轴及直线x=1所围图形的面积为.试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.
七、(15分)已知un(x)满足
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0013_0010.jpg?sign=1738833056-7o1OwiTgGRjbKbA8HPMAtwggJ5IKNYfk-0-5ba448b5ff35bd1902f134cf0e2b344a)
且,求函数项级数
之和.
八、(10分)求x→1-时,与等价的无穷大量.
参考答案
一、(1).(2)
.(3)2x+2y-z-5=0.(4)
.
二、解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0004.jpg?sign=1738833056-dV2okd0CX7o5rahKE8nTuw1KVSsFVk6k-0-403cccfe75c7e925bf5508170534f7d5)
其中大括号内的极限是型未定式,由洛必达法则,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0006.jpg?sign=1738833056-WfYuG5TjtqsaRCP48S5aNKqk3W7Bh5e1-0-838e5d0f69c2ba42723f5b2848b06852)
于是
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0007.jpg?sign=1738833056-zNbLMpKePi7Y1ml26A7r3G0EUe3RWMei-0-62d569bea09666f2aef196d915746e51)
三、解 由题设,知f(0)=0,g(0)=0.令u=xt,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0008.jpg?sign=1738833056-TCjn17WKH8X0zw93KYYnviwxynK3QMkW-0-2ffdcb742ec44c33aca64241eea91f3d)
而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0009.jpg?sign=1738833056-sgONDxvQGn98BOHswoImd1q1kpPVj2KG-0-0808d8ca79e1eec1584b1f58d6bd29d3)
由导数的定义有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0010.jpg?sign=1738833056-fRLjBrnin5ijCjrRqzPKmcTfy67T0I2T-0-f0a754ddad408be2b986c354c73bd801)
另外
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0011.jpg?sign=1738833056-iY5c52bB53RVkxK027RTVqHmbCQBTZqg-0-3534fa4b03be124a1d85b23dfef2e0b7)
从而知g′(x)在x=0处连续.
四、证法1 由于区域D为一正方形,可以直接用对坐标曲线积分的计算法计算.
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0012.jpg?sign=1738833056-rURxJWO1SEOwaQqXBWUFDWYVncOcG3bf-0-ccf6a9a921eaf9dd316f624cf504a0cd)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0013.jpg?sign=1738833056-lnEi3zeL0UgFHge3UDCEn1clmYA44cHV-0-685b5e326735439145a1d8b0f2036cd1)
(2)由泰勒公式得esinx+e-sinx≥2+sin2x,故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0014.jpg?sign=1738833056-5UfH8tM7ZdjYSToMCWIq1hmjkSHSHtv9-0-a2c97435a75e4a96437f43ce2d098fcf)
证法2 (1)根据格林公式,将曲线积分化为区域D上的二重积分
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0015.jpg?sign=1738833056-CrTBusz0qIYaUO059xw5all2zUO8x4Ow-0-5bf33f4a2a06541e16425cd7d24e0cfa)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0001.jpg?sign=1738833056-PfJyYp5dpFci62tBZ8OnhmD5K4a2nzJw-0-735375c9bdb96c6fc908345f762739e6)
因为关于y=x对称,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0002.jpg?sign=1738833056-KgKc9tXH2wYXgBXvdvFsaC4gAQ9i5JXj-0-4adff654e2bc0078468a102917a6077a)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0003.jpg?sign=1738833056-eFE4SUVNyiygBRJXMspNEpPaQAAUMR6A-0-98bd3725af3d571efb942be07d75ef09)
(2)由,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0005.jpg?sign=1738833056-po2yAwatHMvl3GQtIn6IT3CTfOgjmsNZ-0-c3f99a9b23ec76b44fdc3a7291abf9eb)
五、解 根据二阶线性非齐次微分方程解的结构的有关知识,由题设可知2y1-y2-y3=e2x与y1-y3=e-x是相应齐次方程两个线性无关的解,且xex是非齐次方程的一个特解,因此可以用下述两种解法.
解法1 设此方程式为
y″-y′-2y=f(x).
将y=xex代入上式,得
f(x)=(xex)″-(xex)′-2xex=2ex+xex-ex-xex-2xex=ex-2xex,
因此所求方程为y″-y′-2y=ex-2xex.
解法2 设y=xex+c1e2x+c2e-x是所求方程的通解,由
y′=ex+xex+2c1e2x-c2e-x,y″=2ex+xex+4c1e2x+c2e-x,
消去c1,c2得所求方程为y″-y′-2y=ex-2xex.
六、解 因抛物线过原点,故c=1.由题设有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0006.jpg?sign=1738833056-vlcNiFMobJB4iTBqxSnwmw8M0c8itNzn-0-d4199f9b6dfb28ed00b8e2983d1883f7)
即,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0008.jpg?sign=1738833056-IVIZqQ0CHgfWJdSAhJBeGO3C10aOvBex-0-2f8864956efeea1a6aa52dc0fa33ac41)
令
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0009.jpg?sign=1738833056-j5CCgR0QaGlhxJjw68JgTXw9HH7bJ4Bk-0-bbecbe70e53e66ac487d18e67baae5d9)
得,代入b的表达式得
,所以y≥0.
又因及实际情况,当
,
,c=1时,体积最小.
七、解 先解一阶常系数微分方程,求出un(x)的表达式,然后再求的和.
由已知条件可知是关于un(x)的一个一阶常系数线性微分方程,故其通解为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0017.jpg?sign=1738833056-3BvRHZhKIcoZ0832oOqV8O7La3CCpKAx-0-8a86af73e716f20d796b7ab16746eac8)
由条件,得c=0,故
,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0020.jpg?sign=1738833056-JnpEf9vtbyEX6RE3vvdTMrnJX7NnGe8i-0-08620ef3972f025110b2c3c2f125db22)
,其收敛域为[-1,1),当x∈(-1,1)时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0002.jpg?sign=1738833056-iobed5oKaW2Lz0R8gEFvKiKhG5kviyHU-0-f7b92604cde4b8f804857dac9e11ada2)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0003.jpg?sign=1738833056-JxeHPqYMP5sDNydMbVaAeCvQu3D3TZwK-0-55c6f202ec3ed200f3baa0a5a05d3382)
当x=-1时
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0004.jpg?sign=1738833056-HtoHmmZYcwLjIK9k91twZWLqfsh3RNuX-0-2ddeefc5d8e63ce28eddf10041eafad7)
于是,当-1≤x<1时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0005.jpg?sign=1738833056-iYSQ5AhV6wmjcsNm18k1BfizM7Axz7mO-0-d58fee7f0e3051209d08b5d980c76b33)
八、解 ,故有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0007.jpg?sign=1738833056-H6K0oS7WH0Di32NESs2A11nQiwr7uoZR-0-e6b67cc715308726313201f3f98571b8)