![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第四届全国大学生数学竞赛预赛(2012年非数学类)
试题
一、解答下列各题(本题共5个小题,每题6分,共30分)(要求写出重要步骤)
1.求极限.
2.求通过直线L:的两个相互垂直的平面π1和π2,使其中一个平面过点(4,-3,1).
3.已知函数z=u(x,y)eax+by,且,确定常数a和b,使函数z=z(x,y)满足方程
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0026_0004.jpg?sign=1738832242-xSH8yTHiCbgHhJouM0MaxqmjueWkT5iz-0-bca1782749f382e8c6a76bf3836cb55b)
4.设函数u=u(x)连续可微,u(2)=1,且在右半平面与路径无关,求u(x).
5.求极限.
二、(10分)计算.
三、(10分)求方程的近似解,精确到0.001.
四、(12分)设函数y=f(x)的二阶导数连续,且f″(x)>0,f(0)=0,f′(0)=0,求,其中u是曲线y=f(x)在点P(x,f(x))处的切线在x轴上的截距.
五、(12分)求最小的实数C,使得满足的连续的函数f(x)都有
.
六、(12分)设F(x)为连续函数,t>0.区域Ω是由抛物线z=x2+y2和球面x2+y2+z2=t2(t>0)所围起来的部分.定义三重积分
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0026_0012.jpg?sign=1738832242-MshNG52Vk89jTviTRscdd86VEWLiVBw2-0-eab1e78db53cfaada34a75201a578b9c)
求F(t)的导数F′(t).
七、(14分)设与
为正项级数.
(1)若,则
收敛;
(2)若,且
发散,则
发散.
参考答案
一、1.解 因为,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0005.jpg?sign=1738832242-BTk9HBXUeLv6IOC9ndvIEDja5ZAR6jft-0-bd4e91dace6efd07be62e90a4ef43126)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0006.jpg?sign=1738832242-NbLIM8JexKv597UEW2z7FIHLEOfFPV2B-0-f9dd997ec67e6186d3e84a328a6820fe)
即
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0007.jpg?sign=1738832242-D2RrkxflEhoVUYjwGCNRQQD5znJsIRco-0-90dd5d1b178a44f353d13d0d5220e092)
2.解 过直线L的平面束为
λ(2x+y-3z+2)+μ(5x+5y-4z+3)=0,
即
(2λ+5μ)x+(λ+5μ)y-(3λ+4μ)z+(2λ+3μ)=0,
若平面π1过点(4,-3,1),代入得λ+μ=0,即μ=-λ,从而π1的方程为
3x+4y-z+1=0,
若平面束中的平面π2与π1垂直,则
3(2λ+5μ)+4(λ+5μ)+1(3λ+4μ)=0.
解得λ=-3μ,从而平面π2的方程为x-2y-5z+3=0.
3.解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0008.jpg?sign=1738832242-19BUdDjc1jPWe2Qpnb8nS0p48b2WXwpN-0-e7771711964d2a8d34cf2ce6c93a680c)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0009.jpg?sign=1738832242-k3ib7iaZl4OvcliWc6391pRDssn63USw-0-ad34a54d4d6dbae17194fc933d243c88)
若使,只有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0011.jpg?sign=1738832242-8ohC5WyyHBJRuBbQg0dNoz4mfPPExIvz-0-c436791d8991ba8b13a9735c2953d4d4)
即a=b=1.
4.解 由得(x+4u3)u′=u,即
,方程通解为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0014.jpg?sign=1738832242-jvOeYz8IB5rIz7fIIEYDcHFopEzimzGs-0-f79f597eff624e16fbab8bd3fe72e3da)
由u(2)=1得C=0,故.
5.解 因为当x>1时,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0016.jpg?sign=1738832242-YoQdPWL5bADgodeeRrc7nNPcqiVKZsrA-0-32638f087f7a3e920c80fb0d1cd25d25)
所以.
二、解 由于
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0001.jpg?sign=1738832242-OqNIlUQuldSyhY8NZORguh8BnW3pvxuu-0-a6f5fd85838f20561b532008a1295e0c)
应用分部积分法
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0002.jpg?sign=1738832242-gMUREQf3Jp5zUEDBcw1YWjWcFJzyFrGW-0-9b92389d50f0db84541e638b82fb323d)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0003.jpg?sign=1738832242-BcbtoiBWQijVg1MnS64wpHUxOqrcCiVw-0-d460ad4eb0cf59fb3fe58f4bd3d52c0d)
当nπ≤x<(n+1)π时,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0004.jpg?sign=1738832242-hsjbkCYBchQpkThQwSBJtmHn7yXkEmEE-0-c621cd38d6f53c252d84000c74237f2a)
令n→∞,由夹逼准则,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0005.jpg?sign=1738832242-adGIjbdMJAEaU2EhBpz5UBjsopUkyQZl-0-1fdcfff2e382aa150129f416040bc7d5)
注 如果最后不用夹逼准则,而用
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0006.jpg?sign=1738832242-dwubJAYIvSHxU8K9IgME2ohuP5WbhXf4-0-648d4dd1ca53ad1057f1aab3612cbeb4)
需先说明收敛.
三、解 由泰勒公式有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0008.jpg?sign=1738832242-mTLjZlCRMwJ838vCwkru7k9Z5C571aW5-0-7e21f82a0d1ddd62d615b3770d10593a)
令得
,代入原方程得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0011.jpg?sign=1738832242-Qrn8vXCldRI4HrjH7sZYuqDF0C1HiPS0-0-bc98a75dd8c9bdae462b467b55623b2f)
由此知x>500,,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0013.jpg?sign=1738832242-aEiIAtJw4SIuRrsxyfUsNSGVynjbkq35-0-dade80f90f32fe1a23f2bdb49c07950d)
所以,x=501即为满足题设条件的解.
四、解 曲线y=f(x)在点p(x,f(x))处的切线方程为
Y-f(x)=f′(x)(X-x),
令Y=0,则有,由此
,且有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0016.jpg?sign=1738832242-s2eI1u4b7c7edPXuOdlcRGC6LP4Aq37I-0-bffc753dc58ff1647f940c9881f49b97)
由f(x)在x=0处的二阶泰勒公式
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0017.jpg?sign=1738832242-x2Rt81a6mwbRKLSBa7lOhrcRYSwxf9Dx-0-2c9ec3f3063ab7c9d632824e2282086a)
得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0018.jpg?sign=1738832242-8gxWRV6ITmI0ECbjTPSI8tE8XR3Dyqqn-0-7afca18b1230c950a55318f9e8fcc320)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0001.jpg?sign=1738832242-OfLAZoJqB1McdzjjuFO4P61XJFiAkYHN-0-ade0ed1e2bcac5fffb1464a681aaa188)
五、解 由于.
另一方面,取fn(x)=(n+1)xn,则,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0004.jpg?sign=1738832242-31w4HMJD9gMIysz7X6LoQM6jWgrWbtz3-0-6afc7055ece7b2a2475cdd5fa084d473)
因此最小的实数C=2.
六、解法1 记,则Ω在xy面上的投影为x2+y2≤g.
在曲线上任取一点(x,y,z),则原点到该点的射线和z轴的夹角为
.取Δt>0,则θt>θt+Δt.对于固定的t>0,考虑积分差F(t+Δt)-F(t),这是一个在厚度为Δt的球壳上的积分.原点到球壳边缘上的点的射线和z轴夹角在θt+Δt和θt之间.我们使用球坐标变换来做这个积分,由积分的连续性可知,存在α=α(Δt),θt+Δt≤α≤θt,使得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0009.jpg?sign=1738832242-s0WsxcyRR03ePZP0z57c8dCspwPqoIIA-0-61430e167cea61eaefbf8286da1c181a)
这样就有.而当Δt→0+时
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0011.jpg?sign=1738832242-qOaLliEbETX4seGBSqfkKQqc3OHdKpyo-0-a713cabace5c6caba89577693bc00d09)
故F(t)的右导数为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0012.jpg?sign=1738832242-gRkDPPSlg4gzGacWsxhoW3vl2Ehd89hl-0-bd5274f1da9407cb6e3791ba0264fbfc)
当Δt<0时,考虑F(t)-F(t+Δt)可以得到同样的左导数.因此
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0013.jpg?sign=1738832242-l43Z2nSiWybQbdhZ2jHOOkIP55u6iHBt-0-0c89f442990b1a692a93a2f4d65b67b8)
解法2 令
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0014.jpg?sign=1738832242-7sM4bWeipbCo66H6RIZDp67Uft5PQncH-0-11980e86be2ae6a5e92ac0e0d051e443)
其中a满足a2+a4=t2,即.故有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0016.jpg?sign=1738832242-wCMc6gE2RiUkCASSWPkFFpTGQj3zS5sl-0-41a9c695beb0d2395d1182c2f9f38556)
从而有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0017.jpg?sign=1738832242-mjKhLlkZaC6IoCHJje2FilteLIX7o0pE-0-05a86a14255413d188aa7727a038995a)
注意到,第一个积分为0,我们得到
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0019.jpg?sign=1738832242-dWKExdapGY7LBBEDhebDzSAFNf2vlHZl-0-f44346d423c6c5e2771e7d57d0260342)
所以.
七、证 (1)设,则存在N∈N,对于任意的n≥N,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0030_0002.jpg?sign=1738832242-LI22eAyNAly8xRKPFM5lYlxnwrlwk2Eh-0-44be963e47165b780585c1b4f8a3e9a0)
因而的部分和有上界,从而
收敛.
(2)若,则存在N∈N,对于任意的n≥N,有
,于是
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0030_0007.jpg?sign=1738832242-wVEBSFmOmg5hOTnKbQ2kARDDkAM91usI-0-eb812163f23a4c767de9fa960438c25b)
于是由发散,得到
发散.