![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
上QQ阅读APP看书,第一时间看更新
§2.5 高阶导数
函数y=f(x)的导数y'=f'(x)显然仍是函数,因此还可以再考虑导函数y'=f'(x)的导数问题.例如,导数的物理意义是:如果某物体的运动规律是s=s(t),t>0,则物体在某时刻t的导数就是在该点的瞬时速度,即v(t)=s'(t).它仍然是时间t的函数,如果再要求考虑速度v(t)的变化快慢,即求某时刻t的加速度a(t),会有a(t)=v'(t)=[s'(t)]'.这就是导数的再求导问题.
定义设导函数f'(x)在点x0处的某邻域内有定义,如果极限
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00067005.jpg?sign=1739273273-rtSdP1fv0uPIJkVJbPBbgMn5owETakZB-0-0e9a3341d559444aa026e12f2bb75eaf)
存在,则称此极限值为函数f(x)在点x0处的二阶导数.记作
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00067006.jpg?sign=1739273273-EmXcC5TRU0uoQksEFAG1TdnLbKrHp2Ca-0-4f1e7587ad35466d07cedf215ba38d5f)
类似地,可以定义三阶导数,四阶导数,…,n阶导数,它们分别记为y‴,y(4),…,y(n)或分别记为,
,…,
;二阶及二阶以上导数统称为高阶导数.求高阶导数,只需对函数y=f(x)“逐阶求导”即可.
例1 设y=5x3-2x+1,求y‴,y(4).
解 y'=15x2-2,y″=30x,y‴=30,y(4)=0.
发现:y=xn,y(n)=n!,y(n+1)=0.
例2 y=2x,求y(n).
解 y'=2xln2,y″=2x(ln2)2,y‴=2x(ln2)3,…,y(n)=2x(ln2)n.
发现:(ax)(n)=ax(lna)n.特别地,(ex)(n)=ex.
例3 y=sinx,求y(n).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00068002.jpg?sign=1739273273-DtdsdDJHm8a8qFRovWKfL0KQ5NzqNnhn-0-59034714ae4cdfa5703ace1e4df9695a)
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00068003.jpg?sign=1739273273-7oI7HNOrDXPRePKF9dlGjPAIm3bfl7up-0-67d0c726b96c9101ae3ace901695da65)
例4 求y=lnx的n阶导数y(n).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00068004.jpg?sign=1739273273-DtDSPMhIke5vpDTkJS54UC2RSslhbQmO-0-36fffbe72975399bc047655a8ca5ec89)
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00068005.jpg?sign=1739273273-IWN9yGDXzNtPrhOn7PDM58IbEiPGVBQh-0-7ebee9c4ecdbdc0e802948edd03497e6)
例5 设y=arctanx,求y″(0),y‴(0).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00068006.jpg?sign=1739273273-AiNdOoqUxflgvzncPakb0lyRfhp2ZP7Z-0-3c4c5d077b51bb396b02e4048d7a7d81)
将x=0代入以上各式,得
y″(0)=0,y‴(0)=-2.
发现:有些函数的n阶导数可以从其前n-1阶导数中寻找到表达式的一般规律,进而推出n阶导数的通式