![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
2.4.1 隐函数的求导法则
1.隐函数求导法
一般地,如果变量x,y之间的函数关系由方程F(x,y)=0所确定,那么这种函数就叫作由方程所确定的隐函数.把一个隐函数化成显函数,叫作隐函数的显化.如由方程x+y3-1=0解出.但有些隐函数显化很困难,甚至无法显化为初等函数,如x+y-exy=0,那么这样的函数怎样求导呢?
方法就是:方程两边同时对x求导,且y是x的函数;遇到含y的函数,要按复合函数求导法则进行求导.
例如,(siny)'=cosy·y',特殊地,当y=x时,(sinx)'=cosx·(x)'=cosx.
下面通过几个具体的例子来说明这个方法.
例1 求由方程y6-3x2+6x3y2=0所确定的隐函数y=y(x)的导数y'.
解 方程两边同时对x求导,可得
6y5·y'-6x+6(3x2·y2+x3·2y·y')=0,
由上式解出y',便得隐函数的导数为
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00064008.jpg?sign=1739275386-u6AsJphvI44koY8RmsmY03jN6QbrgUd3-0-5556fc97bd56bc5c2e01a5929b2d4259)
例2求由方程x+y-exy=0所确定的隐函数y=y(x)的导数y'x,并求y'x(0).
解 方程两边同时对x求导,可得
1+y'-exy·(xy)'=0,
即
1+y'-exy·(y+xy')=0,
由上式解出y',便得隐函数的导数为
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065001.jpg?sign=1739275386-d6BmkqG8y2SFGJPUmsL73t2y2Z7HCTv1-0-787786b247a0c22cd936b2f5d4477fcb)
当x=0时,代入x+y-exy=0,得y=1,代入y',得
y'x(0)=0.
例3 求椭圆在点M
处的切线方程.
解 椭圆方程两边同时对x求导,可得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065004.jpg?sign=1739275386-1FG9DOg57uh56mYRdXbbdvdamiFDd0CZ-0-5c30ffb6d24b8b6600254b983ecb30e2)
由上式解出y',便得隐函数的导数为
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065005.jpg?sign=1739275386-Jf41IMYYSwkBMYKthyko5Q3G7AK97OYd-0-1080bd174342726c7fc7ce594a6d9103)
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065006.jpg?sign=1739275386-CfidnuebEqZIAGx4SAhGEEEdG7vYMvwk-0-e3b214e1ea1b5c15ecfea4412156da84)
所以椭圆在点M 处的切线方程为
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065008.jpg?sign=1739275386-UdAHu7o7V9V0Q1LUpwEOL24o8OTgoE78-0-422855e064cd690da7082349d40b098c)
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065009.jpg?sign=1739275386-7KMb62Z7bNHaeF6Jas96YV1VJ49JvArd-0-32e613237ac2e5afdb6ff6c29d8e5131)
2.取对数求导法
根据隐函数的求导方法,还可以得到一个简化求导运算的方法,即取对数求导法.它适合于由几个因式通过乘、除、乘方、开方所构成的比较复杂的函数(包括幂指型函数y=u(x)v(x))的求导.这个方法是先取对数,再化乘、除为加、减,化乘方、开方为乘积,然后利用隐函数的求导方法求导.
例4 求下列函数的导数.
(1);(2)y=xsinx(x>0,x≠1).
解 (1)先在等式两边取绝对值,再取对数,得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065011.jpg?sign=1739275386-0wuTCwmgstZO7mEzgW6MJQ7lcAAVJgA0-0-e04c25f0f089a21e3e0c6dc17d242ab5)
两边同时对x求导,得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065012.jpg?sign=1739275386-u4QKNY6POr37Rl5JgawVbGtksfg0CSF9-0-2fcf7afdf4f03a412d10dda7b6e0d5d8)
所以
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00065013.jpg?sign=1739275386-o2db5osHyM0Lb4Zr5Upg8OIqRKmUGlAl-0-fb4e6adf3a5ddb0d15bb4a58a610a5e5)
(2)这是幂指型函数,对y=xsinx两边取对数,得
lny=sinxlnx,
两边同时对x求导,得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00066001.jpg?sign=1739275386-nfX4Tq2tESQVf46rfnYzrrwV8yk6OJoF-0-d0f0b625dc8b9478aaa4959ee6f27d90)
所以
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00066002.jpg?sign=1739275386-F6rSkUyMxmQmexkAOlgP4l9F0RdSB6m3-0-d64e5668d9ed7787ce5501370cd95d36)