![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
上QQ阅读APP看书,第一时间看更新
2.3.2 初等函数的导数
通过以上的探讨,已经解决了常数和基本初等函数、函数的和、差、积、商、复合函数等的求导问题,也就是初等函数的求导.为了便于熟记和运用,一并总结如下:
1.基本初等函数求导公式
(1)(c)'=0; (2)(xα)'=αxα-1;
(3)(sinx)'=cosx; (4)(cosx)'=-sinx;
(5)(tanx)'=sec2x; (6)(cotx)'=-csc2x;
(7)(secx)'=secx·tanx; (8)(cscx)'=-cscx·cotx;
(9)(ax)'=ax·lna; (10)(ex)'=ex;
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00063001.jpg?sign=1739273168-bSfGBwxeiPtNtKXc1fIjg277LTN6tiY7-0-9005bc58bb778fa00e77d1d39b1dd264)
常用的特殊公式:
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00063002.jpg?sign=1739273168-FeV8XLqG7TwJOhEFxFeSq4ie3ReyTP1q-0-5be0b8c753a32a14000c7e64c77acfe1)
2.求导法则
(1)(u±v)'=u'±v';
(2)(uv)'=u'v+uv',[cu(x)]'=cu'(x)(c为常数);
(3),
);
(4)反函数求导法则;
(5)复合函数求导法则.
例5 求下列函数的导数.
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00063006.jpg?sign=1739273168-57GgF65qOZxKuadPmk7gsH7nl3831tyL-0-2080bc4dd9a667e587a0984180e1401d)