![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
上QQ阅读APP看书,第一时间看更新
2.2.2 反函数的求导法则
已经解决了对数函数和三角函数的求导公式,下面需要解决它们的反函数指数函数和反三角函数的求导,为此给出如下定理.
定理2 如果函数x=φ(y)在区间I内单调、可导,且φ(y)'≠0,则其反函数y=f(x)在相应区间内也可导,且
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059008.jpg?sign=1739271735-MAsnMdwGV2NQhvcW7SGKLguImim4PxHC-0-7c139f44979b17bc6859654279391f44)
证明 由于互为反函数x=φ(y)与y=f(x)在各自相应的区间内单调性是一致的,所以,当Δx≠0时,Δy≠0,则
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059009.jpg?sign=1739271735-9MLHYPMZtslSXTEeqbGWAcNPwCtoDTMJ-0-73318c52081d975c6d48356de6327035)
函数x=φ(y)在区间I内可导且φ(y)'≠0,则函数x=φ(y)在区间I内必连续,则其反函数y=f(x)在相应区间内也连续,即当Δx→0时,Δy→0,所以
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00059010.jpg?sign=1739271735-QXLPFE5LRyLzCsXEWQJRnVrJicMO83P8-0-58e690c63b02ab19457b8794f408cceb)
即
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060001.jpg?sign=1739271735-ox9hFN1XIi9iXjHUTZVwkUOWQdC4Bw4l-0-fd9b8924598bf49b885b7de30ca75e8f)
简言之,某函数反函数的导数等于该函数导数的倒数.
例6 求函数y=arcsinx和y=arctanx的导数.
解 因为y=arcsinx(-1<x<1)的反函数为,它们在各自的定义区间内单调、可导,且有
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060004.jpg?sign=1739271735-Scppf3f8ZlSyLx7ihLBlMIMOvQYAmEMD-0-5b45e509f3d9ec4e4093d1f1c2108abc)
因为y=arctanx(-∞<x<+∞)的反函数为,它们在各自的定义区间内单调、可导,且有
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060006.jpg?sign=1739271735-jDqnkQZTcamvBJYUM7gdIXmBZJM5kzrw-0-3e8aafb7b14d9f84de5aadf6a0ec5f90)
所以
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060007.jpg?sign=1739271735-EBzqWAN8qFVWAomqiKe130JChll1HImv-0-0da1cf8ea409902c1fda05feae9d4ebf)
同理可推得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060008.jpg?sign=1739271735-Yjev886pQuNaewU9VgHtXqGgwehAbd4L-0-264d41b39e91e65f8fbe6cfa8aa0d643)
(ax)'=axlna,(ex)'=ex.
例7 求函数的导数.
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00060010.jpg?sign=1739271735-EE9QwDHGHWri4H3drSwzyfMJ7ilCkIxj-0-c44819fe3cec2cb6cbb172c94a951d4b)