![近代光学](https://wfqqreader-1252317822.image.myqcloud.com/cover/677/683677/b_683677.jpg)
6.3 亥姆霍兹和基尔霍夫积分定理[1],[3],[4]
6.3.1 亥姆霍兹方程
对于频率为ν的单色光波,其场量可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0005.jpg?sign=1739297026-uID4GSRjTDlJYUGxWi0iihlwBjsEnUZs-0-a0d979108524de4b832cc04383d929e9)
U(P)和φ(P)分别为振幅和初相位。引入复振幅,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0006.jpg?sign=1739297026-GY5eIop5NLRlDg1yoSHgLPMKiCUipUvt-0-f44d15e580bdc0a6db5e84393b3508f4)
则可将式(6.3-1)表示为场量复数形式(P)exp(-i2πνt)的实部,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0008.jpg?sign=1739297026-u3aVOEkipnyRrc0KDk91FkbgLcG5LG2m-0-4600fda94a56aecf245ae9d0757417b3)
光波场u(P,t)在无源点满足标量波动方程
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0009.jpg?sign=1739297026-7GG2OpTldFR5Y6rKAKLI77PAvzGYgDwF-0-1bd62adc7cae9c7f2d40042d3962f263)
对于单色光,其场量对时间的关系确定,其复振幅满足的空间分量微分方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0010.jpg?sign=1739297026-AFsrTR5e6Awn70r0jnjtTiNRvpL9NCSM-0-0343ebce8912c34b1105f053c056b154)
其中,k为波数,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0011.jpg?sign=1739297026-IvYQ8sb8dIrKw9b7f6mQWUrgzz3CbXIR-0-857e4cd5860f0259fe569bc63151bc6a)
式(6.3-5)称为亥姆霍兹方程。光波场中任意一点的场值即亥姆霍兹方程的解,这个解可以通过基于格林定理的积分定理来获得。
6.3.2 格林定理
假设S为封闭曲面,G、U分别是空间位置的复函数,且在S内和S上单值并连续,并存在一阶和二阶偏导数。用G、U构造一矢量F
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0001.jpg?sign=1739297026-hQGIY3hAWtVfD463bA018Q4tyO8ROAPS-0-cf17ad62bac9f3000108a3f758596f25)
则
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0002.jpg?sign=1739297026-FEd4TeVFDPvi8LXgpqah3W6gg2zHR7FD-0-0e81057a1cf395feb17871e0bd81d00c)
应用高斯定理
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0003.jpg?sign=1739297026-pKUunw46oTAdfMBMhNicUlriGnd3rbhx-0-86fd47aeefe6a2c3d5731be82a8e9a4b)
上式右边有负号是因为n取S内法线矢量的缘故。于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0004.jpg?sign=1739297026-rA1SNBSrZZljhqjLgufmY5AsR8w8ORk5-0-84d866047b7b7bc0f49e22bc633655d5)
格林定理是标量衍射理论的数学基础,只要选择合适的格林函数G和封闭曲面S,就可以用格林定理来分析很多衍射问题。
6.3.3 亥姆霍兹和基尔霍夫积分定理
为了利用格林定理来求解亥姆霍兹方程,需要构造格林函数G。设观察点位于P点,S1为包围P点的任意封闭曲面,如图6.3-1所示。
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0005.jpg?sign=1739297026-WYDvXjwVczNUvFDFcP3eHcc8kaTuIU4K-0-aa8ca66241053d1c79274e1c9a78edc1)
图6.3-1 积分区域
令U为单色光场的复振幅。假设G表示由P点发出的同频率发散球面波,则对任意点P1有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0006.jpg?sign=1739297026-sb5Gi9s7Lju2yfA5CqlvxSSrsWOhNXzB-0-6f81eec2a695380ba021c5d7b642e514)
r为从点P到点P1的距离。若要运用格林定理,函数G及其一阶、二阶导数必须在封闭曲面包围的区域V内是连续的,但在图6.3-1中封闭曲面S1内,式(6.3-11)所定义的格林函数在P点为奇点,不满足在区域V内连续的条件。因此需要将
P点从积分区域排除,为此以P点为球心,ε为半径作一小球,球面为S2。曲面S1和球面S2所围的区域为V',则在区域V'内,G(P)满足亥姆霍兹方程,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0007.jpg?sign=1739297026-8xSg1oGKLkVaq0Pb3mIPYaVf8W8ooatq-0-9b8114bdc253d8396a08f796e575b091)
U也满足亥姆霍兹方程,根据格林定理有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0008.jpg?sign=1739297026-touzMzsNldAvGARSo5YNBAGlxGQuZEax-0-73431a9a9d06752cdda0a3e5a4e81085)
显然,在曲面S2上,内法线沿径向,于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0009.jpg?sign=1739297026-xV9waJdvNL0mc0E2LZaO1Ml9uOlfsOJX-0-a33518c41aa62b4b6f574210da0aa007)
式中,dΩ表示立体角,Ωε为S 2面相对P点所张的立体角。将式(6.3-11)代入上式可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0001.jpg?sign=1739297026-CDPBqvrcLO0T15s305vE0bQaaPNOevLI-0-467adbc0864a296cdaf90571752aa6e6)
注意,在得到上式过程中用到条件及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0003.jpg?sign=1739297026-UeYZFRgmLXppoCd5Mwn5dqZeqaNh3VBr-0-f77d01aece1ad36369db12e61e133824)
P1为S2上的任一点。假设ε为无限小量,并且函数U及其导数在P点周围是连续的,则式(6.3-15)右边第二个积分趋于零而第一个积分变为4πU(P)。因此
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0004.jpg?sign=1739297026-UfhGs4s073Wc8QTW8sljurYrwJ78OZuP-0-372d8682354d73bc4976b6ceedf3e1e5)
将上式代入式(6.3-13)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0005.jpg?sign=1739297026-rZW1g2PrwtusPeAY6SlDK9rxoDQbqCU6-0-91460ca12d96eee5e5625e8535dc63a2)
或者
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0006.jpg?sign=1739297026-QQMUjnMBNoswmlySg9QagXECt7Gl7QSA-0-40ddfb8ecbab6c4fc1c7b671d0ec27e6)
式中,r0是位矢r的单位矢量,式(6.3-18)为亥姆霍兹和基尔霍夫积分定理,它给出一个重要结果:如果某一函数U满足亥姆霍兹方程,且函数U及其法向导数在某一封闭曲面上已知,则该函数在曲面内任一点的值都能够确定。