![近代光学](https://wfqqreader-1252317822.image.myqcloud.com/cover/677/683677/b_683677.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.5 电磁场的能量与坡印廷矢量[6],[7],[17],[18]
根据麦克斯韦方程组
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0057_0007.jpg?sign=1739297003-I2PILsuwE55VN4kqQpwtPKzbWO17yqms-0-ad7efbc913932e26bba3546ece464687)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0057_0008.jpg?sign=1739297003-OMEaCiLZAqDmityHSJuLM9qhgrR7J7Gc-0-cb87ecf2d819d8f88aa4f5743babf349)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0057_0009.jpg?sign=1739297003-teAK14fmDXbBZXQQn8WwvGpNS68qhzxD-0-3356a1a209c846c5a2ce58d9e72b072e)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0057_0010.jpg?sign=1739297003-AbZ0ZOe9KUCkUyBnqkMqg7ZqcLbRsiC1-0-4bd8357b2891948d2943775ae670103e)
用H点乘式(1.5-1a)两边得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0001.jpg?sign=1739297003-guv0GZ0ALMiNLAFZkChtysTOevEM14Uz-0-08644bca3ccd0dea43967bee294c22cb)
用E点乘式(1.5-1b)两边得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0002.jpg?sign=1739297003-xzDrqkbJCtsw5mjUnPVwx1hgOmw9aot3-0-863d14d60b4ef1e6634ce1e024796e43)
式(1.5-2)与式(1.5-3)相减得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0003.jpg?sign=1739297003-UVs64gahbDgLAePJHSwPWz5nuZETrBiy-0-ea331f978bf1e658fa976acea0b9084d)
根据矢量运算公式,上式左侧为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0004.jpg?sign=1739297003-4t9eAhII9427irZTdFG2FC2eI1S4kv17-0-4dcae385976f0d60bcc59d6dfcb6d1ae)
故有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0005.jpg?sign=1739297003-dntzRXLmENAq06IzqwC4tiob4hTLEgVa-0-fafa3fbf0e28e51b9d39ef6506cf7d03)
引入坡印廷矢量S,其定义为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0006.jpg?sign=1739297003-8ZWVqXS7OVteGH4tYZt9HldhmIVbmP8P-0-b65840c888c1ba74077fc2344479b21e)
S也称为能流密度矢量,表示单位时间内通过垂直于波传播方向的单位面积的电磁场能量。另外
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0007.jpg?sign=1739297003-fYADawc5L0V34BdHaL9Y6ucJt3yrFTCm-0-42c2a06b04684f5ce2a2ffb62f571751)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0008.jpg?sign=1739297003-dZJxpWSZyAvLlgzc7VKVqNOkd3eKJX9B-0-cee7f5229acbbb7e08d8946f5c803623)
令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0009.jpg?sign=1739297003-uaTtAvgE23brWUqZSNOOWDdfHY3JwNpd-0-0086b4c86e673c29ee4d8f0dee94c38c)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0010.jpg?sign=1739297003-dQ7LTeMmu7S4uaXHCYkXkDiJMglq7Waq-0-a7b7a62eeb0ea4a58dd3fee38cabbb75)
we与wm 分别为电场能量密度和磁场能量密度。式(1.5-10)与式(1.5-11)之和为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0011.jpg?sign=1739297003-cLRB6S6Uq8RgXAtvGjdAvv8GiQDw7fRE-0-5e5071ae5ecec123488aa57c2982192e)
w为电磁场能量密度,于是式(1.5-6)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0012.jpg?sign=1739297003-NWKpVjcPi4CRSdChlIuA0fjsTzcmGxq1-0-a76eb681236d5a387fe05250608ba902)
将上式在所考虑的体积V中进行积分可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0013.jpg?sign=1739297003-hGdUvXl1MWD6ifJx3KN1WKNiwXKAOrva-0-684cd7ea69011c7e147a3bbaeb8ce6b5)
或
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0014.jpg?sign=1739297003-J68ZtjzNRjOTJfOoISmhHANCaHtR2GSV-0-498ab251dea83b06c9545b49075e857c)
上式第一项为坡印廷矢量的面积分,表示单位时间内流出包围所考虑体积V的封闭曲面Σ的电磁场能量。上式第二项W为w在体积V中的积分,dW/dt表示单位时间内体积V中电磁场能量的增量。下面讨论第三项的意义。有非静电力K存在时的欧姆定律为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0015.jpg?sign=1739297003-nN13hzoYDlNgzm7aQIdo6t2vdXffcrFY-0-702f258cfebd3a86234459c2ed057ae6)
其中,σ为电导率,ρR为电阻率(注意区别于麦克斯韦方程组中的电荷密度ρ)。这样得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0058_0016.jpg?sign=1739297003-UD1NqKDX8qcsLM5VLGbqipUovaGnRDPJ-0-bec3b2a21099ddcb7562387eaf44fae6)
为了更清楚地看出上式的含义,选择一个截面积为ΔΣ、长为ΔL的电流管,如图1.5-1所示,则
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0059_0001.jpg?sign=1739297003-rlIA7qDBdmg2TOk4yRWyBXGWIi3bngbY-0-a03c662ec96eb54dac059eaf4ac169ec)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0059_0002.jpg?sign=1739297003-FwG87lHkMJa9ciq0f0IL6Oo67RAEFfnP-0-af36f6226846faeed74e9071e4c366b5)
图1.5-1 电流管示意图
式(1.5-18)中,I为流过所考虑的电流管的电流,R为该电流管的电阻,Δε为非静电力产生的电动势。显然,式(1.5-18)最后一个等号右边第一项表示单位时间内,所考虑空间内所产生的焦耳热损耗Q=I2R,第二项表示单位时间内非静电力所做的功P=IΔε。
将式(1.5-18)代入式(1.5-15)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0059_0003.jpg?sign=1739297003-P0d3YYh9wYfTcplQuN4o8CFMAbLxj9eN-0-416df45965d10995094407192632d9be)
或者
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0059_0004.jpg?sign=1739297003-JOpcnBErXQOxVDls75PcnMSaHtNCPvyg-0-d9cd6846ec6b2fbe2ad4c2e81c69a5b8)
即单位时间内体积V中电磁场能量的增量等于单位时间内非静电力所做的功P减去单位时间内从表面Σ流出的电磁场能量(坡印廷矢量的面积分)和单位时间内的焦耳热损耗Q。这就是电磁场的能量守恒定律。式(1.5-20)为电磁场的能量守恒定律的数学表述,称为坡印廷定理。式(1.5-13)为坡印廷定理的微分形式。