![光电信息物理基础](https://wfqqreader-1252317822.image.myqcloud.com/cover/268/655268/b_655268.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.3 矢量微分算子
1. ▽算子
▽算子是一个微分算子,同时又是一个矢量算子,具有微分运算和矢量运算的双重性质。一方面它作为微分算子对它作用的函数求导,另一方面这种运算又必须适合矢量运算法则。本节来说明 ▽算子的运算性质,并给出一些常用公式。必须指出,虽然作为例子用直角坐标系给出了一些公式的证明,但这些公式的正确性与坐标系选择无关。
我们已经给出 ▽算子表示标量场的梯度、矢量场的散度和旋度,即
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0004.jpg?sign=1738885958-HRSFBBTLqgDQauIB95bvPzt9BdEimpBe-0-a7be6fde843f299d5eb90b802515e49b)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0005.jpg?sign=1738885958-RhJgMKpmnverltlSzSdGGRUcnMtaEM9P-0-32bd077800693e94815b486dc3115eaf)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0006.jpg?sign=1738885958-XJl89kKlGhaiIAbmtVDoQ6aLyldHaMxu-0-7c40552a1ecdd8702fdc3c1f4616f3ce)
▽算子还可以构成一个纯标量算子,即
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0007.jpg?sign=1738885958-pztEq4oNxQIG5AyaHBH8tFMydXB8JRJj-0-e0a2be472e90c664d6e9ce8b36dfc78f)
称为Laplace算子,其可作用在标量函数和矢量函数上。
2. ▽算子常见计算公式
(1)设u是标量场,则有
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0008.jpg?sign=1738885958-nXV3mWXsthMNOu2DBb3O3YD8F4Uxim7s-0-40880f9c4db4cd305b367da3be1af9a4)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0001.jpg?sign=1738885958-OzJRTXw9DxHnA3zrnRVAPtOmGYmth8y6-0-9c047cc288063b41ddba27ef84e42717)
(2)设u和v是标量,A和B是矢量,则有
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0002.jpg?sign=1738885958-0fE5GVLAHciEcLGb1H9bjRqWuvZgK1t1-0-643dbe48f1fda4269b98a2e40cbf054d)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0003.jpg?sign=1738885958-m4nhja7BWCGOkyKZqYvFnnFokQbdgd5F-0-5bc37e22133c2a70429a6c23bdecfca8)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0004.jpg?sign=1738885958-GSySgfVE8Fjpe8FFR4x1bj6dSbp3N8wV-0-ca57bb8e0fa662c517e204bf80581538)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0005.jpg?sign=1738885958-E6N3QUDG7CyQBvFWi1r6PbMGNZXjvtgw-0-e8980e4729fb5cadad769a331a340bb2)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0006.jpg?sign=1738885958-t7uwn87MOrqLJ14jmW7HDJ9HB5eCcJul-0-7b02101838f4454d73b409f8dc5d7936)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0007.jpg?sign=1738885958-VcaBrpC2jA2LCNP6KnEozXDJZDWQyZel-0-75668772b98f5baa8c425076f14a66b4)
(3)关于 ▽的二级微分运算为
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0008.jpg?sign=1738885958-WjpLcNLiU6GP1jUWrERDiQl1StLBXKWy-0-bfc45dfbda684afe7d72c7307e74e2e8)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0009.jpg?sign=1738885958-gXMQhod2wtS72nWXLPtfbEWvSal1ajmK-0-eaab9a6edbd47ea069d600b4d507751a)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0010.jpg?sign=1738885958-RaNUjONAOvMlG3h4EUkYFnBS91rrj8u7-0-d600f56c053cdcd6e618ffa19a7877ec)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0011.jpg?sign=1738885958-OEQKsE1jrmlNAImLKP13aDtlED7E0z8q-0-6622ecdaba0acf8a17ff0deacc361b8b)
3. 关于场源的一些常用结论
设有场点为r=exx+eyy+ezz,源点为r′=exx′+eyy′+ezz′,且记
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0012.jpg?sign=1738885958-gf5N9TG3vq1fw6ktW5kd7FmclG4wBJsa-0-db9a88cec0a785b54b91728c7ca5a549)
则有
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0013.jpg?sign=1738885958-2yIcGyFEI18GmhcVeafDv6e3bWGqoWt0-0-1ae0f63faa982ef60fe4d0665b5fc5c4)
同时有
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0014.jpg?sign=1738885958-NrBUO5yG7iS8O0ijakncO6Zne4XrZY6N-0-bf8c9e514bed16f344c55113822839a5)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0018_0001.jpg?sign=1738885958-klYu2E9ne5AY6hXDNO7bv258JIcPiQIe-0-7191132876276b9dbb642bc689e955cd)
4. 高斯定理和斯托克斯定理
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0018_0002.jpg?sign=1738885958-7O3177CeqpOZnY9NGmIcgGjOchufo3Pp-0-223f131938a728371603821c6b31e414)
【例1-4】 计算下列各式的值,其中C为常矢量。
(1)▽·[(C·r)r];(2)▽ ×[(C·r)r];(3)C· ▽ × 。
解:(1)▽·[(C·r)r]= ▽[(C·r)]·r+(C·r)(▽·r)=C·r+3C·r=4C·r
(2)▽ ×[(C·r)r]= ▽[(C·r)]× r+(C·r)(▽ × r)=C × r
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0018_0004.jpg?sign=1738885958-yi6oCyCNqOwhOTsfoWuMyqn7RynVYVIw-0-b1eacd8120799a6fcb5349e92a818caf)
【例1-5】 求 ▽2 eiK·r,其中K为常矢量。
解:由
▽eiK· r=eiK· r ▽(iK·r)=iKeiK· r
而
▽2eiK· r= ▽· ▽eiK· r= ▽·(iKeiK· r)= ▽eiK· r·iK= - |K|2eiK· r